The volatile fatty acids (VFAs) productions, as well as particulate organics decomposition, soluble chemical oxygen demand (SCOD) yield, and the VFAs production pathways from mesophilic and thermophilic anaerobic fermentation in waste activated sludge were investigated. Batch experiments showed that the decomposition rate of volatile suspended solids (VSS), particulate carbohydrate (P-C) and particulate protein (P-P) followed the first-order kinetic model at different temperatures. However, the intermediates, accumulated in the process of protein or carbohydrate digestion had a more significant inhibitory effect on the production of VFAs during the mesophilic anaerobic acidification process.
View Article and Find Full Text PDFThe generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.
View Article and Find Full Text PDFThe study evaluated influences of sludge concentration, temperature and solids retention time (SRT) for the hydrolysis of waste activated sludge (WAS) in anaerobic digesters. The results indicated that volatile fatty acids (VFA) production increased when the concentration of mixed liquor volatile suspended solids (MLVSS) was higher. When SRT was 48 h, VFA concentration increased 8.
View Article and Find Full Text PDF