During base excision repair (BER), the apurinic or apyrimidinic (AP) site serves as an intermediate product following base excision. In plants, APE-redox protein (ARP) represents the major AP site of cleavage activity. Despite the well-established understanding that the nucleosomal structure acts as a barrier to various DNA-templated processes, the regulatory mechanisms underlying BER at the chromatin level remain elusive, especially in plants.
View Article and Find Full Text PDFUpon the occurrence of DNA double strand breaks (DSB), the proximal histone variant H2A.X is phosphorylated as γ-H2A.X, a critical signal for consequent DSB signaling and repair pathways.
View Article and Find Full Text PDFFront Plant Sci
October 2022
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks.
View Article and Find Full Text PDFChromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes.
View Article and Find Full Text PDFEukaryotic genes are packaged into dynamic but stable chromatin structures to deal with transcriptional reprogramming and inheritance during development. Chromatin remodeling factors and histone chaperones are epigenetic factors that target nucleosomes and/or histones to establish and maintain proper chromatin structures during critical physiological processes such as DNA replication and transcriptional modulation. Root apical meristems are vital for plant root development.
View Article and Find Full Text PDFThe proper modulation of chromatin structure is dependent on the activities of chromatin-remodeling factors and their interplays. Here, we show that the Arabidopsis chromatin-remodeler AtINO80 interacts with the actin-related protein AtARP5 and can form a larger protein complex. Genetic analysis demonstrated that AtARP5 acts in concert with AtINO80 during plant cellular proliferation and replication stress response.
View Article and Find Full Text PDFChromatin structure requires proper modulation in face of transcriptional reprogramming in the context of organism growth and development. Chromatin-remodeling factors and histone chaperones are considered to intrinsically possess abilities to remodel chromatin structure in single or in combination. Our previous study revealed the functional synergy between the Arabidopsis chromatin-remodeling factor INOSITOL AUXOTROPHY 80 (AtINO80) and the histone chaperone NAP1-RELATED PROTEIN 1 (NRP1) and NRP2 in somatic homologous recombination, one crucial pathway involved in repairing DNA double strand breaks.
View Article and Find Full Text PDF