Publications by authors named "Huihui Xia"

Article Synopsis
  • Traditional methods for creating top electrodes in organic photovoltaics (OPVs) are slow and complicated due to the need for vacuum and high temperatures.
  • Low-melting-point alloys (LMPAs) offer a vacuum-free, printable solution that has good conductivity and stability, making them ideal for OPV electrodes.
  • The technique of depositing LMPA electrodes through single droplet impact shows potential for scalable manufacturing, achieving power conversion efficiencies up to 16.17%.
View Article and Find Full Text PDF

Organic semiconductor (OSC) films fabricated by meniscus-guided coating (MGC) methods are suitable for cost-effective and flexible electronics. However, achieving crystalline thin films by MGC methods is still challenging because the nucleation and crystal growth processes are influenced by the intertwined interactions among solvent evaporation, stochastic nucleation, and the fluid flow instabilities. Herein, a novel flexible fountain pen with active ink supply is designed and used to print OSCs.

View Article and Find Full Text PDF

Ground-level ozone (O) pollution has emerged as a significant concern impacting air quality in urban agglomerations, primarily driven by meteorological conditions and social-economic factors. However, previous studies have neglected to comprehensively reveal the spatial distribution and driving mechanism of O pollution. Based on the O monitoring data of 41 cities in the Yangtze River Delta (YRD) from 2014 to 2021, a comprehensive analysis framework of spatial analysis-spatial econometric regression was constructed to reveal the driving mechanism of O pollution.

View Article and Find Full Text PDF

Arabidopsis methylation elevated mutant 1 (mem1) mutants have elevated levels of global DNA methylation. In this study, such mutant alleles showed increased sensitivity to methyl methanesulfonate (MMS). In mem1 mutants, an assortment of genes engaged in DNA damage response (DDR), especially DNA-repair-associated genes, were largely upregulated without MMS treatment, suggestive of activation of the DDR pathway in them.

View Article and Find Full Text PDF

Developing manufacturing methods that are scalable and compatible with a roll-to-roll process with low waste of material has become a pressing need to transfer organic photovoltaics (OPVs) to a viable renewable energy source. For this purpose, various spray printing methods have been proposed. Among them, electrospray (ES) is an attractive option due to its negligible material waste, tunable droplet size, and tolerance to the substrate defects and roughness.

View Article and Find Full Text PDF

In order to effectively analyze and explore the socio-economic impact of haze pollution, the article constructs a comprehensive two-stage decomposition model to verify that technological progress plays a key role in controlling haze pollution. And for the first time, a macro-level research framework for the rebound effect of haze pollution has been constructed to compare and analyze the heterogeneity of the rebound effect of technological progress in different industries in different regions. The study found that (1) during the period 2000-2017, haze pollution situation deteriorated.

View Article and Find Full Text PDF

We report the development of a laser gas analyzer that measures gas concentrations at a data rate of 100 Hz. This fast data rate helps eddy covariance calculations for gas fluxes in turbulent high wind speed environments. The laser gas analyzer is based on derivative laser absorption spectroscopy and set for measurements of water vapor (HO, at wavelength ~1392 nm) and carbon dioxide (CO, at ~2004 nm).

View Article and Find Full Text PDF

To discover new mutants conferring enhanced tolerance to drought stress, we screened a mutagenized upland rice (Oryza sativa) population (cv. IAPAR9) and identified a mutant, named idr1-1 (increased drought resistance 1-1), with obviously increased drought tolerance under upland field conditions. The idr1-1 mutant possessed a significantly enhanced ability to tolerate high-drought stresses.

View Article and Find Full Text PDF

In order to analyze and control air pollutant emissions effectively, on the basis of comprehensive consideration of three different pollution sources of industrial sulfur dioxide, industrial nitrogen oxides, and industrial smoke and dust, the Tapio decoupling model and LMDI decomposition model with six decomposition variables are constructed to compare the effects of socioeconomic factors on industrial air pollutant emissions in 11 cities in Zhejiang Province during 2006-2017. Then, a decoupling effort model is developed to analyze the effectiveness of the decoupling efforts taken at city level. This study found that (1) during the period of 2006-2017, the air pollutant emission reduction work in Zhejiang Province achieved remarkable results.

View Article and Find Full Text PDF

In order to study levels of BTX near a main road in Hefei in March 2016, benzene, toluene, -xylene, and -xylene (BTX) and conventional pollutants (such as NO and SO) in the atmosphere were monitored through a home-made differential optical absorption spectroscopy (DOAS) system. Results showed that average concentrations of benzene, toluene, -xylene, and -xylene were 21.7, 63.

View Article and Find Full Text PDF

In the field of the absorption spectrum, especially for direct tunable diode laser absorption spectroscopy (dTDLAS) technology, the integrated area of the absorption spectrum is needed to be measured accurately for calculating the temperature and the component concentration of the flow field. Doing single optical path absorption spectroscopic measurement in the non-uniform flow field, spectral lineshape broadening is varied with the flow changes, in previous research reports, researchers mainly use single Voigt or Lorentz profile to fit absorbance curve or use directly integral to obtain the integrated area of the absorption spectrum. There are some shortcomings in these methods, resulting in certain error between the fitting result and the actual area, which is not conducive to the accurate measurement of flow field parameters.

View Article and Find Full Text PDF

We specify water vapor among combustion products as the target gas based on tunable diode absorption spectroscopy in this paper. The direct absorption signals of water vapor after being processed can be used to calculate the gas concentration distributions and temperature distributions of the combustion region of methane and air flat flame furnace via algebraic reconstruction technique (ART). In the numerical simulation, reconstruction region is a grid of five by five, we assume a temperature and water vapor concentration distribution of 25 grid, then simulate different direction laser rays which cross the combustion region, generating projection of each ray, by ART reconstruction algorithm, it turns out that the temperature and water vapor distribution reconstruction error is less than 1%.

View Article and Find Full Text PDF