IEEE Trans Vis Comput Graph
September 2021
Dashboard visualizations are widely used in data-intensive applications such as business intelligence, operation monitoring, and urban planning. However, existing visualization authoring tools are inefficient in the rapid prototyping of dashboards because visualization expertise and user intention need to be integrated. We propose a novel approach to rapid conceptualization that can construct dashboard templates from exemplars to mitigate the burden of designing, implementing, and evaluating dashboard visualizations.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2018
Analyzing social networks reveals the relationships between individuals and groups in the data. However, such analysis can also lead to privacy exposure (whether intentionally or inadvertently): leaking the real-world identity of ostensibly anonymous individuals. Most sanitization strategies modify the graph's structure based on hypothesized tactics that an adversary would employ.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2018
Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2018
Sharing data for public usage requires sanitization to prevent sensitive information from leaking. Previous studies have presented methods for creating privacy preserving visualizations. However, few of them provide sufficient feedback to users on how much utility is reduced (or preserved) during such a process.
View Article and Find Full Text PDF