Publications by authors named "Huifeng Wei"

Chirality plays a very important role in medicine, biochemistry and other fields. Because the enantiomers of chiral drugs often show different pharmacology activity, metabolism, and toxicity, therefore, the recognition of chiral molecules is very important, and has become a hot spot and frontier of modern chemical research. In this paper, a new method for recognizing chiral molecular based on naphthalimide dye(NA)⊂cucurbit[5]uril(CB[7]) assembly is developed.

View Article and Find Full Text PDF

We have experimentally investigated spatial-division multiplexed (SDM) Brillouin optical time-domain analysis in a heterogeneous multicore fiber whose central core and six outer cores are made from different preforms, showing a ∼70  MHz Brillouin frequency shift (BFS) difference between them. It reveals that the heterogeneous central core and the outer cores have different temperature sensitivities, but their strain sensitivities are almost the same. By making use of the distinct temperature coefficients of these two kinds of cores, simultaneous and discriminative temperature and strain measurements are achieved.

View Article and Find Full Text PDF

We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated.

View Article and Find Full Text PDF

We have demonstrated a new approach for developing very large mode area silica-based microstructured Ytterbium (Yb)-doped fibers. The microstructured region acting as pump cladding around the core is composed by periodically arranged low-index Fluorine-doped silica inclusions with an extremely low filling ratio of 0.088.

View Article and Find Full Text PDF

We report on a compact sensor by integrating a Mach-Zehnder interference and a cladding Bragg grating in a same section of all-solid photonic bandgap fiber. Theoretical investigation reveals that the Bragg grating resonance stems from the coupling of counter-propagating cladding LP01-like supermodes and the Mach-Zehnder interference works between a LP01-like supermode and LP01 core mode. Compared with the interference fringe, such supermode grating dip responses to axial strain in a more sensitive and opposite-direction manner.

View Article and Find Full Text PDF

A temperature compensated magnetic field strength optical fiber sensor has been proposed and experimentally demonstrated. A fiber Bragg grating (FBG) is cascaded to modal interferometer (MI), which is fabricated by dual S-bend splicing between thin fiber (TF) and single mode fiber (SMF) with intentionally controlled misalignment between cores. We established a modified numerical model to describe the multi-mode interference of this exceptional S-bend and misalignment structure, together with the simulation based on beam propagation method to gain insight into its operation mechanism.

View Article and Find Full Text PDF

The mitigation of both crosstalk and its wavelength dependent sensitivity for homogeneous multicore fiber (MCF) is theoretically investigated using an analytical evaluation approach. It is found there exists a performance trade-off between the crosstalk mitigation and its wavelength dependent sensitivity suppression. After characterizing the fabricated homogeneous MCFs, we verify that although the increasing core pitch can mitigate the crosstalk, the wavelength dependent sensitivity is drastically degraded from 0.

View Article and Find Full Text PDF

We propose a new technique to perform precise selective infiltration of an air hole in the photonic crystal fiber (PCF). To carry out the infiltration process, the end face of the PCF is covered by a mask, which is fabricated by femtosecond laser inscription from the lateral direction. This proposed method overcomes the conventional limitation of maximum mask thickness.

View Article and Find Full Text PDF

A novel, simple, and compact optical fiber directional bending vector sensor based on Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. The device consists of a piece of seven-core photonic crystal fiber (PCF) sandwiched between two single mode fibers (SMFs) with a lateral offset splicing joint that covering two cores of PCF. Bending sensitivity of the seven-core PCF based MZI is changed by an axial rotation angle, which shows its capacity for recognizing positive and negative directions.

View Article and Find Full Text PDF

A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.

View Article and Find Full Text PDF

Photonic crystal fibers (PCFs) are widely used in all-fiber, high-power lasers and supercontinuum sources. However, the splice loss between PCFs and conventional fibers limits its development. Grin fibers and coreless fibers were used as a fiber lens to achieve low-loss, high-strength splicing between PCFs and single-mode fibers (SMFs).

View Article and Find Full Text PDF

An alcohol not full-filled high-birefringence photonic crystal fiber (HiBi-PCF) temperature sensor based on an optical fiber Sagnac interferometer (OFSI) is demonstrated and investigated in detail. A new phenomenon that the resonant dip wavelengths of the temperature sensor blueshift with temperature increasing is observed, which is contrary to that of the previously reported alcohol filled HiBi-PCF OFSI temperature sensor. By considering the influences of the group birefringence and the thermo expansion of alcohol, this phenomenon is explained very well.

View Article and Find Full Text PDF

We propose and demonstrate a novel and simple dual-parameter measurement scheme based on a cascaded optical fiber device of long-period grating (LPG) and photonic crystal fiber (PCF) modal interferometer. The temperature and refractive index (RI) can be measured simultaneously by monitoring the spectral characteristics of the device. The implemented sensor shows distinctive spectral sensitivities of -30.

View Article and Find Full Text PDF

In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift.

View Article and Find Full Text PDF

We demonstrate the fabrication of high-quality LPFGs in simplified hollow-core photonic crystal fibers, composed of a hollow hexagonal core and six crown-like air holes, using CO2-laser-irradiation method. Theoretical and experimental investigations indicate that the LPFGs are originated from the strong mode-coupling between the LP01 and LP11 core modes. And a dominant physical mechanism for the mode-coupling is experimentally confirmed to be the periodic microbends rather than the deformations of the cross-section or other common factors.

View Article and Find Full Text PDF

A novel in-fiber modal interferometer based on a long period grating (LPG) inscribed in a two-mode all-solid photonic bandgap fiber (AS-PBGF) is presented. After inserting a small piece of the AS-PBGF into two sections of standard single-mode fiber (SMF) via being spliced slight core offset, LPG is inscribed in the AS-PBGF. The LPG is especially designed to realize the coupling between two core modes of LP01 and LP11 in the AS-PBGF.

View Article and Find Full Text PDF

We report on multimodal coherent anti-Stokes Raman scattering (CARS) imaging with a source composed of a femtosecond fiber laser and a photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). By switching between two PCFs with different zero dispersion wavelengths, a tunable signal beam from the FOPO covering the range from 840 to 930 nm was produced. By combining the femtosecond fiber laser and the FOPO output, simultaneous CARS imaging of a myelin sheath and two-photon excitation fluorescence imaging of a labeled axons in rat spinal cord have been demonstrated at the speed of 20 μs per pixel.

View Article and Find Full Text PDF

A compact temperature sensor based on a fiber loop mirror (FLM) combined with an alcohol-filled high-birefringence photonic crystal fiber (PCF) is proposed and experimentally demonstrated. The output of the FLM is an interference spectrum with many resonant dips, of which the wavelengths are quite sensitive to the change of the refractive index of the filled alcohol for the interference of the FLM. Simulation analysis predicts a high temperature sensitivity, and experimental results show it reaches up to 6.

View Article and Find Full Text PDF

We have fabricated a novel nanoweb fiber with web-like bundle of the fused-silica membranes with different thickness in its cross section. We pumped the 0.55-μm-thick membrane with 200-fs laser pulse at 800-nm just adjacent to its second-zero-dispersion wavelength, and demonstrated the polarization dependent visible supercontinuum (SC).

View Article and Find Full Text PDF

We demonstrate generation of 48fs pulses with linear chirp using a short (27mm) fiber optical parametric oscillator (FOPO), which is synchronously pumped by a mode-locked ytterbium-doped fiber laser. We also study the pulse quality for both the short- and long-wavelength operation where the fiber length inside of the oscillator varies from 17 to 61mm. The optimal pulse duration is observed only in the short-wavelength operation.

View Article and Find Full Text PDF

We introduce a novel photonic crystal fiber (PCF) temperature sensor that is based on intensity modulation and liquid ethanol filling of air holes with index-guiding PCF. The mode field, the effective refractive index and the confinement loss of PCF were all found to become highly temperature-dependent when the thermo-optic coefficient of the liquid ethanol used is higher than that of silicon dioxide and this temperature dependence is an increasing function of the d/Lambda ratio and the input wavelength. All the experiments and simulations are discussed in this paper and the temperature sensitivity of transmission power was experimentally determined to be 0.

View Article and Find Full Text PDF

High order resonances between fundamental core mode and cladding LP(01) supermodes are demonstrated in long period fiber gratings (LPFGs) inscribed in all-solid photonic bandgap fibers for the first time to our knowledge. The resonance wavelengths of the LPFGs calculated by way of photonic bandgap theory agree with the experimental results. The temperature responses of these resonance peaks have been theoretically and experimentally investigated.

View Article and Find Full Text PDF

We realize the flattening and extending of a CW-pumped supercontinuum with a high spectral intensity peak at the pump region. It is achieved by cascading a long zero-dispersion wavelength high-nonlinearity fiber with the output photonic crystal fiber, in order to improve the conversion efficiency of residual pump energy to long-wavelength continuum based on the effect of cascaded stimulated Raman scattering. Compared with the non-flattened continuum of 10.

View Article and Find Full Text PDF