Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties.
View Article and Find Full Text PDFAims: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied.
Methods And Results: Upon identification, the strain was classified as Candida sp.
The unique cellar fermentation process of Chinese strong-flavor Baijiu is the reason for its characteristic cellar aroma flavor. The types, abundance, community structure and metabolic activity of microorganisms in the pit mud directly affect the microbial balance in the white spirit production environment, promoting the formation of typical aromas and influencing the quality of CFSB. During the production process, the production of off-flavor in the cellar may occur.
View Article and Find Full Text PDFIn the past few years, orbital angular momentum (OAM) has aroused great interest in the scientific communities, because it shows great potential for enhancing capacities of radio and optical communication systems. Here, we propose anisotropic metasurfaces to generate multiple OAM vortex beams at microwave frequencies. A phase compensation theory is presented, in order to determine the phase distributions on metasurfaces, This theory enables independent control of beam numbers, polarizations, orientations, and topological charges of OAM vortex beams, respectively.
View Article and Find Full Text PDF