Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.
View Article and Find Full Text PDFLiver fibrosis is a chronic disease that lacks effective drug treatment. Chronic damage and inflammation lead to the formation of collagen and fibrous scars. However, the excessive accumulation of collagen I significantly hinders the delivery of drugs into liver tissue.
View Article and Find Full Text PDFThe development of negative photoconductivity (NPC)-related devices is of great significance for numerous applications, such as optoelectronic detection, neuromorphic computing, and optoelectronic synapses. Here, an unusual but interesting NPC phenomenon in the novel cesium cobalt chlorine (CsCoCl) single crystal-based optoelectronic devices is reported, which simultaneously possess volatile resistive switching (RS) memory behavior. Joint experiment-theory characterizations reveal that the NPC behavior is derived from the intrinsic vacancy defects of CsCoCl, which could trap photogenerated charge carriers and produce an internal electric field opposite to the applied electric field.
View Article and Find Full Text PDFLead-halide perovskite nanocrystals (NCs) are promising for fabricating deep-blue (<460 nm) light-emitting diodes (LEDs), but their development is plagued by low electroluminescent performance and lead toxicity. Herein, the synthesis of 12 kinds of highly luminescent and eco-friendly deep-blue europium (Eu)-doped alkali-metal halides (AX:Eu; A = Na, K, Rb, Cs; X = Cl, Br, I) NCs is reported. Through adjustment of the coordination environment, efficient deep-blue emission from Eu-5 → Eu-4 transitions is realized.
View Article and Find Full Text PDFAs renal fibrosis nanotherapeutics, the endogenous biomaterial melanin not only has natural biocompatibility and biodegradability but also has inherent photoacoustic imaging ability and certain anti-inflammatory effects. These properties determine that melanin can not only as a carrier of medication but also track the biodistribution and renal uptake of drugs in vivo by photoacoustic imaging in real-time. Curcumin is a natural compound with biological activity, which has excellent ROS scavenging ability and good anti-inflammatory property.
View Article and Find Full Text PDFPurpose: Obstructive sleep apnea (OSA) is common in hypertrophic cardiomyopathy (HCM) patients and is related to worse adverse prognosis in HCM patients. However, there are no acknowledged warning characteristics to help to identify OSA in HCM patients.
Methods: Seventy-one HCM patients and forty-nine hypertensive (HTN) patients as control group underwent polysomnography (PSG) examination at the Second Affiliated Hospital of Nanchang University from January 2015 to December 2019 patients were consecutively enrolled.
Alleviating vascular injury improves the prognosis of atherosclerosis. Semaphorin-3a (Sema3A) is a special membrane-associated secreted protein with various biological properties, like pro-inflammation, anti-tumor and et al. This study aims to investigate the effects of inhibition of Sema3A on lipopolysaccharide (LPS)-induced vascular injury in mice.
View Article and Find Full Text PDFExercising was reported by several studies to bring great benefits to heart failure with preserved ejection fraction (HFpEF), which reduced the hospitalization and the mortality of heart failure. However, the underlying mechanism of exercising on HFpEF remains unclear. In the present study, we designed and constructed a device that can perform early passive leg movement (ePLM) in rats and further observed whether treatment of ePLM exerts protective effects on HFpEF of rats.
View Article and Find Full Text PDFPrevious studies have confirmed the clinical efficacy of sacubitril/valsartan (Sac/Val) for the treatment of heart failure with reduced ejection fraction (HFrEF). However, the role of Sac/Val in heart failure with preserved ejection fraction (HFpEF) remains unclear. Sac/Val is a combination therapeutic medicine comprising sacubitril and valsartan that acts as a first angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor (ARNI)).
View Article and Find Full Text PDFRecently, a pressing requirement of solid-state lighting sources with high performance and low cost has motivated increasing research in metal halide perovskites. However, the relatively low emission efficiency and poor operation stability of perovskite light-emitting diodes (LEDs) are still critical drawbacks. In this study, a strategy of solution-processed all-inorganic heterostructure was proposed to overcome the emission efficiency and operation stability issues facing the challenges of perovskite LEDs.
View Article and Find Full Text PDFThe vapor-assisted solution method was developed to prepare high-quality organic-inorganic halide perovskite CHNHPbBr (MAPbBr) thin films. We detailedly investigated the effect of evaporation time and temperature of MABr powder on the microstructure, crystallinity, and optical characterizations of MAPbBr thin films, and a controllable morphology evolution with varying surface coverage was observed. Temperature-dependent and time-resolved photoluminescence measurements were carried out to investigate the optical transition mechanisms and carrier recombination dynamics of MAPbBr thin films.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2016
To analyze the protein composition of Brucea javanica seeds and evaluate the cytotoxicity of its gulbulin hydrolysates. Four protein fractions of albumin, gulbulin, prolamin and glutelin were sequentially extracted and then quantified by Kjeldahl method. Different kinds of proteases were applied to hydrolyze B.
View Article and Find Full Text PDFBursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-à-go-go-related gene (ERG) K(+) channels are functionally significant.
View Article and Find Full Text PDFSmall conductance Ca(2+) -activated K(+) (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca(2+) binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca(2+) affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1H-indole-2,3-dione-3-oxime and R-N-(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine.
View Article and Find Full Text PDFBlocking the small-conductance (SK) calcium-activated potassium channel promotes burst firing in dopamine neurons both in vivo and in vitro. In vitro, the bursting is unusual in that spiking persists during the hyperpolarized trough and frequently terminates by depolarization block during the plateau. We focus on the underlying plateau potential oscillation generated in the presence of both apamin and TTX, so that action potentials are not considered.
View Article and Find Full Text PDFTransient changes in the activity of midbrain dopamine neurons encode an error signal that contributes to associative learning. Although considerable attention has been devoted to the mechanisms contributing to phasic increases in dopamine activity, less is known about the origin of the transient cessation in firing accompanying the unexpected loss of a predicted reward. Recent studies suggesting that the lateral habenula (LHb) may contribute to this type of signaling in humans prompted us to evaluate the effects of LHb stimulation on the activity of dopamine and non-dopamine neurons of the anesthetized rat.
View Article and Find Full Text PDF