Neutralizing antibodies provide vital protection against foot-and-mouth disease virus (FMDV). The virus neutralization test (VNT) is a gold standard method for the detection of neutralizing antibodies. However, its application is limited due to the requirement for live virus and unsuitability for large-scale serological surveillance.
View Article and Find Full Text PDFThe serious impact of on jujube black spot disease has seriously affected the quality and yield of jujube, constraining the sustainable development of the jujube industry. The purpose of this study was to isolate and screen highly effective biocontrol strains of jujube black spot disease from jujube rhizosphere soil. Thirty-three soil samples were collected from four regions in southern Xinjiang.
View Article and Find Full Text PDFNon-structural protein 2 (NSP2) of PRRSV is highly variable and plays crucial roles in the virus's life cycle. To elucidate the function of NSP2 during PRRSV infection, we identified SH3KBP1 as an NSP2-interacting host protein using mass spectrometry. Exogenous SH3KBP1 expression significantly inhibited PRRSV replication by enhancing IFN-I and related ISGs production.
View Article and Find Full Text PDFIntroduction: occurs extensively in the soil environment. It produces a range of antimicrobial compounds that play an important role in the field of biological control. However, during the actual application process it is often affected by factors such as the medium formulation and fermentation conditions, and therefore biocontrol measures often do not achieve their expected outcomes.
View Article and Find Full Text PDFPorcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes.
View Article and Find Full Text PDFFoot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. Vaccination and surveillance against non-structure protein (NSP) are the most efficacious and cost-effective strategy to control this disease. Therefore, vaccine purity control is vital for successful prevention.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2023
Objective: Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity.
View Article and Find Full Text PDFMicroRNAs are small non-coding RNA that regulate host anti-viral immune response. In this study, we used high-throughput sequencing to identify miRNAs that were differentially expressed upon PRRSV infection in porcine alveolar macrophages. We observed that the expression level of miR-122 was decreased upon PRRSV infection.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) remains a very serious barrier to agricultural development and the international trade of animals and animal products. Recently, serotype O has been the most prevalent FMDV serotype in China, and it has evolved into four different lineages: O/SEA/Mya-98, O/ME-SA/PanAsia, O/ME-SA/Ind-2001 and O/Cathay. PanAsia-2, belonging to the O/ME-SA topotype, is prevalent in neighbouring countries and poses the risk of cross-border spread in China.
View Article and Find Full Text PDFThe level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a "gold standard" method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance.
View Article and Find Full Text PDFBackground: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses.
View Article and Find Full Text PDFGenetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT) protein has been widely planted worldwide. The development of a rapid method for detecting PAT protein is of great importance to food supervision. In this study, a simple label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification molecules and electrochemically active substances.
View Article and Find Full Text PDFFoot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intraserotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH.
View Article and Find Full Text PDFFoot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce.
View Article and Find Full Text PDFPigs are susceptible to foot-and-mouth disease virus (FMDV), and the humoral immune response plays an essential role in protection against FMDV infection. However, little information is available about FMDV-specific mAbs derived from single B cells of pigs. This study aimed to determine the antigenic features of FMDV that are recognized by antibodies from pigs.
View Article and Find Full Text PDFInactivated foot-and-mouth disease virus (FMDV) vaccines have been used widely to control foot-and-mouth disease (FMD). However, the virions (146S) of this virus are easily dissociated into pentamer subunits (12S), which limits the immune protective efficacy of inactivated vaccines when the temperature is higher than 30 °C. A cold-chain system can maintain the quality of the vaccines, but such systems are usually not reliable in limited-resource settings.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) is a highly contagious disease and one of the most economically important diseases of livestock. Vaccination is an important measure to control FMD and selection of appropriate vaccine strains is crucial. The objective of this study was to select a vaccine candidate and to evaluate the potential of a blocking ELISA for detecting neutralizing antibodies (NA-ELISA) in vaccine strain selection.
View Article and Find Full Text PDFThe development of a universal vaccine against foot-and-mouth disease virus (FMDV) is hindered by cross-serotype antigenic diversity and by a lack of knowledge regarding neutralization of the virus in natural hosts. In this study, we isolated serotype O-specific neutralizing antibodies (NAbs) (F145 and B77) from recovered natural bovine hosts by using the single B cell antibody isolation technique. We also identified a serotype O/A cross-reacting NAb (R50) and determined virus-NAb complex structures by cryo-electron microscopy at near-atomic resolution.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
November 2020
Antigenic purity is important for quality control of the foot-and-mouth (FMD) whole virus inactivated vaccine. The recommended method for evaluation the antigenic purity of FMD vaccine is to check the serum conversion to non-structural protein (NSP) 3AB antibody after 2 to 3 times inoculation of animals with inactivated vaccine. In this study, we developed a quantitative ELISA to detect the amount of residual 3AB in vaccine antigen, to provide a reference to evaluate the antigenic purity of FMD vaccine.
View Article and Find Full Text PDFThe integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt).
View Article and Find Full Text PDFBackground: Recent study has shown that the C-terminal portion of 3A (amino acids (aa) 81-153) is not essential for foot-and-mouth disease virus replication in cell culture, however, the complete C-terminal portion (aa 77-153) of 3A is highly variable and prone to occur deletions and mutations, therefore, we presume that this region plays a very limited role and probablely is completely nonessential for virus viability.
Methods: In this study, to identify the largest non-essential region of the C-terminal portion in 3A for FMDV viability, several deletions containing aa 80-153, 77-153 and 76-153 of 3A protein were introduced into an FMDV full-length infectious cDNA clone pOFS by the overlapping extension PCR. Additionally, to explore the importance of the highly conserved residue 76 L of 3A for the FMDV of Cathay topotype, two mutants containing 3A L76I and 3A L76V were generated based on the 3A deletion mutant by point mutation.