Publications by authors named "Huichun Liang"

Angiogenesis is well known to play a critical role in breast cancer. We previously reported that TNFAIP2 activates Rac1 to promote triple-negative breast cancer (TNBC) cell proliferation, migration, and chemoresistance. However, the potential contribution of TNFAIP2 to tumor angiogenesis remains unknown.

View Article and Find Full Text PDF

Although anti-HER2 therapy has made significant strides in reducing metastasis and relapse in HER2-positive breast cancer, resistance to agents like trastuzumab, pertuzumab, and lapatinib frequently develops in patients undergoing treatment. Previous studies suggest that the hyperactivation of the PI3K-AKT signaling pathway by PIK3CA/PTEN gene mutations is implicated in HER2 resistance. In this study, we introduce a novel PI3K-p110α Proteolysis TAargeting Chimera (PROTAC) that effectively inhibits the proliferation of breast cancer cells by degrading PI3K-p110α.

View Article and Find Full Text PDF

Breast cancer is one of the most prevalent malignancies affecting women worldwide, underscoring the urgent need for more effective and specific treatments. Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy to develop new lead compounds by selectively targeting oncoproteins for degradation. In this study, we designed, synthesized and evaluated a CRBN-based PROTAC, L055, which targets CDK9.

View Article and Find Full Text PDF

Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Angiopoietin-1 (ANG1) is a regulator that helps promote tumor growth by aiding the development and stability of blood vessels, particularly in triple-negative breast cancer (TNBC).
  • Higher levels of ANG1 in TNBC patients are linked to worse outcomes, while reducing ANG1 levels can slow down cancer cell growth and trigger cell death.
  • ANG1 influences TNBC progression by increasing the expression of carboxypeptidase A4 (CPA4), suggesting that targeting the ANG1-CPA4 pathway could be a new approach for treating TNBC.
View Article and Find Full Text PDF

Metastasis is the leading cause of cancer-related death. The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis. Surgery is a common intervention for most primary solid tumors.

View Article and Find Full Text PDF

Basal-like breast cancer (BLBC) accounts for approximately 15% of all breast cancer cases, and patients with BLBC have a low survival rate. Our previous study demonstrated that the KLF5 transcription factor promotes BLBC cell proliferation and tumor growth. In this study, we demonstrated that the histone deacetylase inhibitors (HDACi), suberoylanilide hydroxamic acid (SAHA), and trichostatin A (TSA), increased KLF5 acetylation at lysine 369 (K369), downregulated KLF5 protein expression levels, and decreased cell viability in BLBC cell lines.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is one of the most malignant breast cancers lacking targeted therapeutics currently. We recently reported that mifepristone (MIF), a drug regularly used for abortion, suppresses TNBC cell growth by inhibiting KLF5 expression via inducing miR-153. However, its anticancer efficacy is only modest at high dose.

View Article and Find Full Text PDF

The sprouting of endothelial cells is the first step of tumor angiogenesis. Our previous study suggests that miR-153 suppresses breast tumor angiogenesis partially through targeting hypoxia-induced factor (HIF1α). In this study, we demonstrated that miR-153 also suppresses the migration and the tube formation of endothelial cells through directly targeting angiopoietin 1 (ANG1) in breast cancer cells.

View Article and Find Full Text PDF

Lysine-63-linked (K63-linked) polyubiquitination of TRAF3 coordinates the engagement of pattern-recognition receptors with recruited adaptor proteins and downstream activator TBK1 in pathways that induce type I IFN. Whether autoubiquitination or other E3 ligases mediate K63-linked TRAF3 polyubiquitination remains unclear. We demonstrated that mice deficient in the E3 ligase gene Hectd3 remarkably increased host defense against infection by intracellular bacteria Francisella novicida, Mycobacterium, and Listeria by limiting bacterial dissemination.

View Article and Find Full Text PDF

It is well documented that hypoxia activates the hypoxia-inducible factor 1-alpha (HIF1α)/vascular endothelial growth factor A (VEGFA) axis to promote angiogenesis in breast cancer. However, it is unclear how this axis is negatively regulated. In this study, we demonstrated that miR-153 directly inhibits expression of HIF1α by binding to the 3'UTR of HIF1A mRNA, as well as suppresses tube formation of primary human umbilical vein endothelial cells (HUVECs) and breast cancer angiogenesis by decreasing the secretion of VEGFA.

View Article and Find Full Text PDF

Tetrahydroprotoberberines (THPBs) are isoquinoline alkaloids isolated from the Chinese herb Corydalis yanhusuo. In the present study, we performed competitive binding assays to examine the binding of l-THBr to neurotransmitter receptors known to be involved in sedation, hypnosis and anxiety. Our results show that l-THBr does not interact with GABAergic receptors but has binding affinities for dopamine and serotonin receptors.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancers without effective targeted therapies. Mifepristone (MIF), a drug regularly used for abortion, has been reported to have anti-tumor activity in multiple hormone-dependent cancers, including luminal type breast cancers. In this study, we showed that MIF suppressed tumor growth of the TNBC cell lines and patient-derived xenografts in NOD-SCID mice.

View Article and Find Full Text PDF