In the present study, a novel silane coupling agent, designated INSi, was synthesized via a facile synthetic route, incorporating indole-functional moieties. This agent was further employed for the surface modification of homemade silica nanomicrospheres (SMPs). The ensuing nanomicrosphere composite, denoted as SiO@IN, exemplified pronounced interfacial π-π interactions.
View Article and Find Full Text PDFReal-time temperature feedback in tissue based on photothermal therapy is an urgent problem to be solved in cancer treatment. Herein, a smart all-in-one nanoprobe THA@Eu-NMOF@Fe/TA was designed and assembled by postsynthetical functionalization of an Eu(III)-based nanoscale metal-organic framework (Eu-NMOF) with a two-photon-absorbing β-diketonate ligand 4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione (HTHA) and Fe(III)/tannic acid assembly (Fe/TA). Such a functionalized material can simultaneously achieve the temperature-sensing and optical heating under a single beam of near-infrared (NIR) light.
View Article and Find Full Text PDFThe postsynthetic-modified nanoscale metal-organic framework (NMOF) probes selected as potential drug delivery platforms and photodynamic therapy agents to fulfill the effective and safe treatment of neoplastic diseases have attracted increasing attention recently. Herein, a Eu(III)-based NMOF probe elaborately postsynthetically modified with a β-diketonate two-photon-absorbing (TPA) ligand is rationally designed and further functionalized by assembling the photosensitizer molecule (methylene blue, MB) in the pores and a cyclic peptide targeting motif on the surface of the NMOF, which could achieve highly efficient near-infrared (NIR)-triggered and -targeted photodynamic therapy (PDT). On the basis of the luminescence resonance energy transfer process between the NMOF donor and the photosensitizer MB acceptor, the probe can achieve a high tissue-penetrable TPA-PDT effect.
View Article and Find Full Text PDF