Publications by authors named "Huicheng Ni"

Lithium battery slurry wastewater was successfully treatedby using basalt fiber (BF) bio-carriers in a biological contact oxidation reactor. This resulted in a significant reduction of COD (93.3 ± 0.

View Article and Find Full Text PDF

The carrier medium plays a key role in improving existing remediation potential of conventional biological contact oxidation reactors. In this study, a biological contact oxidation reactor was constructed using basalt fiber (R-BF) as a biological carrier. The bioreactor performance was investigated in terms of reduction in chemical oxygen demand (COD), ammonium nitrogen (NH-N), and total nitrogen (TN) at organic loadings rate of 15.

View Article and Find Full Text PDF

Developing low cost and efficient method for the treatment of electroplating wastewater containing heavy metals complexed with chelating agent has attracted increasing attention in industrial wastewater treatment. This study involved a system combining Fenton oxidation (FO) and recycled ferrite (RF) process for treating synthetic solution containing Ni(II)-EDTA at ambient temperature. In this system, the FO reaction can produce hydroxyl radicals with high redox potential to decomplex the metal-organic complexes and degrade the organics, thereby enhancing the removal efficiency of heavy metals.

View Article and Find Full Text PDF

Generally, biofilms developed for wastewater treatment readily detach from carrier medium once available thickness exceeds about 2 mm. Carrier media made of basalt fibers (BFs) could form ball-like aggregates (more than 10 cm in size, and called bio-nest). To demonstrate its feasibility for wastewater treatment, both reactors with and without BF carriers (RBF and RCO) were evaluated in terms of nutrient removal, oxygen mass transport and biological viabilities as well as biofilm adsorption characteristics.

View Article and Find Full Text PDF