Publications by authors named "Huibin Wei"

Bystanders are the most common role that adolescents play in bullying episodes, they have considerable influence on the formation of the victim's experience and the perpetrator's behavior. Based on the social-cognitive model, the current study examined the mediating role of moral disengagement in the association between callous-unemotional traits and bystander behavior and the moderating roles of moral identity and perceived social support. Participants included 2,286 Chinese adolescents aged 11-16 years (49.

View Article and Find Full Text PDF

This paper describes a simple method for fabricating a series of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures inside microfluidic channels as probe for proteins and glucose. In order to demonstrate the feasibility of this newly developed system, bovine serum albumin (BSA) was chosen as a model protein. PEG microcolumns were used for the parallel detection of multiple components.

View Article and Find Full Text PDF

In this work, we developed a microfluidic device for the imitation of drug metabolism in human liver and its cytotoxicity on cells. The integrated microfluidic device consists of three sections: (1) bioreactors containing poly(ethylene) glycol (PEG) hydrogel encapsulated human liver microsomes (HLMs); (2) cell culture chambers for cytotoxicity assay; and (3) integrated micro solid-phase extraction (SPE) columns to desalt and concentrate the products of enzymatic reaction. To verify the feasibility of the integrated microchip, we studied uridine 5'-diphosphate-glucuronosyltransferase (UGT) metabolism of acetaminophen (AP) and the cytotoxicity of products on HepG2 cells.

View Article and Find Full Text PDF

A microfluidic device was integrated in a controlled coculture system, in which the secreted proteins were qualitatively and semiquantitatively determined by a directly coupled mass spectrometer. PC12 cells and GH3 cells were cocultured under various conditions as a model of the regulation of the organism by the nervous system. A micro-solid phase extraction (SPE) column was integrated in order to remove salts from the cells secretion prior to mass spectrometry detection.

View Article and Find Full Text PDF

A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence.

View Article and Find Full Text PDF

An aptamer-based "sandwich" approach combined with the chemiluminescence (CL) analysis was developed for the capture and detection of rare cells on a microfluidic chip. Aptamers were immobilized on microfluidic channels to achieve capture and isolation of the specific cells from a cell mixture. The capture efficiency for target cells was more than 70% with the purity greater than 97%, when the content of the target cells was between 0.

View Article and Find Full Text PDF

Despite the growing interest to explore untapped microbial gene and protein diversity, no single platform has been able to acquire both gene and protein information from just a few cells. We present a microfluidic system that simultaneously performs on-chip capillary electrophoresis for protein analysis and whole genome amplification (WGA), and we demonstrate this by doing both for the same cohort of cyanobacterial cells. This technology opens avenues for studying protein profiles of precious environmental microbial samples and simultaneously accessing genomic information based on WGA.

View Article and Find Full Text PDF

Porous membranes have been fabricated based on the development of the perforated membrane mold [Y. Luo and R. N.

View Article and Find Full Text PDF

A novel method for the characterization of drug metabolites was developed by integrating chip-based solid-phase extraction (SPE) with an online electrospray ionization quadrupole time-of-fight mass spectrometer (ESI-Q-TOF-MS). The integrated microfluidic device was composed of circular chambers for cell culture and straight microchannels with shrink ends to pack the solid-phase material for sample cleanup and concentration prior to mass analysis. By connecting the two separated microchannels with polyethylene tubes, drug metabolism studies related to functional units, including cell culture, metabolism generation, sample pretreatment, and detection, were all integrated into the microfluidic device.

View Article and Find Full Text PDF

This paper describes an integrated system combining microfluidic devices with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) for monitoring cellular chemical release. To demonstrate the feasibility of this new system, the reported carnosine-protection process against Abeta42-induced glutamate released from PC12 cells, was monitored. Poly-L-lysine coated microchannels were used to culture cells.

View Article and Find Full Text PDF

A novel method based on fluorescence detection of hydrogel encapsulated cells in microchannels was developed for anticancer drug analysis. In this work, human hepatoma HepG2 cells and human lung epithelial A549 cells were simultaneously immobilized inside two different shapes of three-dimensional hydrogel microstructures using photolithography approach on a same array. Microarrays of living cells offer the potential for parallel detection of many cells and thereby enable high-throughput assays.

View Article and Find Full Text PDF

An integrated system combining microfluidic device with electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF-MS) was developed for detecting a series of herbicides on a single C(30) bead. We presented single C(30) beads manipulation which had absorbed sequential herbicides, based on the precise control of the concentration and absorption time. The simple microchip consisting of a straight channel and a hole in the middle enabled single C(30) bead introduction, transformation and location.

View Article and Find Full Text PDF