Publications by authors named "Huib Versnel"

Introduction: The results from different Cochrane studies justify considerable professional equipoise concerning different treatment options for tinnitus. In case of professional equipoise, Shared Decision Making (SDM) is an indispensable tool for guiding patients to the intervention that best fits their needs. To improve SDM we developed a method to assess the accuracy and utility of decisions made by tinnitus patients when freely choosing between different treatment options during their patient journey.

View Article and Find Full Text PDF

Objectives: Single-sided deafness (SSD) is often accompanied by tinnitus, resulting in a decreased quality of life. Currently, there is a lack of high level of evidence studies comparing different treatment options for SSD regarding tinnitus reduction. This randomized controlled trial (RCT) evaluated the effect of a cochlear implant (CI), bone conduction device (BCD), contralateral routing of sound (CROS), and no treatment on tinnitus outcomes in SSD patients, with follow-up extending to 24 months.

View Article and Find Full Text PDF

Background: The role of patients in healthcare research is slowly evolving, although patient roles in the research process are limited. This paper reports on a patient-led research project aiming to develop a musical hearing training programme for patients with a cochlear implant (CI): the Musi-CI programme. A CI is an inner ear prosthesis that allows people with severe hearing loss to hear.

View Article and Find Full Text PDF

Background: Speech perception tests are essential to measure the functional use of hearing and to determine the effectiveness of hearing aids and implantable auditory devices. However, these language-based tests require active participation and are influenced by linguistic and neurocognitive skills limiting their use in patients with insufficient language proficiency, cognitive impairment, or in children. We recently developed a non-attentive and objective speech perception prediction model: the Acoustic Change Complex (ACC) prediction model.

View Article and Find Full Text PDF

Human speech and vocalizations in animals are rich in joint spectrotemporal (S-T) modulations, wherein acoustic changes in both frequency and time are functionally related. In principle, the primate auditory system could process these complex dynamic sounds based on either an inseparable representation of S-T features or, alternatively, a separable representation. The separability hypothesis implies an independent processing of spectral and temporal modulations.

View Article and Find Full Text PDF

The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration.

View Article and Find Full Text PDF

A cochlear implant (CI) is a prosthesis that allows people with severe to profound hearing loss to understand speech in quiet settings. However, listening to music presents a challenge to most CI users; they often do not enjoy music or avoid it altogether. The Musi-CI training course was developed for CI users with the goal of reducing music aversion and improving music enjoyment.

View Article and Find Full Text PDF

Introduction: The leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a tissue resident stem cell marker, which it is expressed in supporting cells (SCs) in the organ of Corti in the mammalian inner ear. These LGR5+ SCs can be used as an endogenous source of progenitor cells for regeneration of hair cells (HCs) to treat hearing loss and deafness. We have recently reported that LGR5+ SCs survive 1 week after ototoxic trauma.

View Article and Find Full Text PDF

Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells.

View Article and Find Full Text PDF

Objectives: Patients with single-sided deafness (SSD) may experience difficulties with speech perception in noise, sound localization, have tinnitus and experience a reduced quality of life (QoL). contralateral routing of sound hearing aids (CROS) or bone conduction devices (BCD) may partly improve subjective speech communication and QoL in SSD patients. A trial period with these devices can help in making a well-informed choice of treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Electrocochleography (ECochG) is utilized during cochlear implant (CI) surgeries to monitor electrode insertion effects on residual hearing, but interpreting results can be challenging.
  • The study involved normal-hearing guinea pigs that underwent multiple ECochG recordings during different stages of cochlear implantation, with assessments of trauma to cochlear structures and auditory signal characteristics.
  • Results showed increased compound action potential (CAP) threshold shifts correlating with trauma severity, demonstrating that both insertion and removal of the electrode array adversely affected hearing responses.
View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) signaling plays a critical role in cell homeostasis, growth and survival. Here, we investigated the localization of the main mTOR signaling proteins in the organ of Corti of normal-hearing and deafened guinea pigs, as well as their possible modulation by exogenously administered brain-derived neurotrophic factor (BDNF) in deafened guinea pigs. Animals were ototoxically deafened by systemic administration of kanamycin and furosemide, and one week later, the right cochleas were treated with gelatin sponge soaked in rhBDNF, while the left cochleas were used as negative controls.

View Article and Find Full Text PDF

Severe hearing loss or deafness is often caused by cochlear hair cell loss and can be mitigated by a cochlear implant (CI). CIs target the auditory nerve, consisting of spiral ganglion cells (SGCs), which degenerate gradually, following hair cell loss. In animal models, it has been established that treatment with the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) reduce SGC degeneration.

View Article and Find Full Text PDF

Cochlear implants (CI) restore hearing of severely hearing-impaired patients. Although this auditory prosthesis is widely considered to be very successful, structural cochlear trauma during cochlear implantation is an important problem, reductions of which could help to improve hearing outcomes and to broaden selection criteria. The surgical approach in cochlear implantation, i.

View Article and Find Full Text PDF

The electrically evoked compound action potential (eCAP) is a direct measure of the responsiveness of the auditory nerve to electrical stimulation from a cochlear implant (CI). CIs offer a unique opportunity to study the auditory nerve's electrophysiological behavior in individual human subjects over time. In order to understand exactly how the eCAP relates to the condition of the auditory nerve, it is crucial to compare changes in the eCAP over time in a controlled model of deafness-induced auditory nerve degeneration.

View Article and Find Full Text PDF

Objectives: Clinical measures evaluating hearing performance in cochlear implant (CI) users depend on attention and linguistic skills, which limits the evaluation of auditory perception in some patients. The acoustic change complex (ACC), a cortical auditory evoked potential to a sound change, might yield useful objective measures to assess hearing performance and could provide insight in cortical auditory processing. The aim of this study is to examine the ACC in response to frequency changes as an objective measure for hearing performance in CI users.

View Article and Find Full Text PDF

Accurate and objective assessment of higher order auditory processing is challenging and mainly relies on evaluations that require a subjects' active participation in tests such as frequency discrimination or speech perception in noise. This study investigates the value of cortical auditory evoked potentials (CAEPs) evoked in response to auditory change stimuli, known as acoustic change complexes (ACCs), as an objective measurement of auditory performance in hearing impairment. Secondary objectives were to assess the effect of hearing loss and non-professional musical experience on the ACC, and compare the ACC to the 'conventional' CAEP evoked in response to stimulus onset.

View Article and Find Full Text PDF

We investigated whether treatment with brain-derived neurotrophic factor (BDNF), which is known to protect spiral ganglion cells (SGCs), could also protect hair cells (HCs) and supporting cells (SCs) in the organ of Corti of a guinea pig model of sensorineural hearing loss. Hearing loss was induced by administration of kanamycin/furosemide and two BDNF treatments were performed: (1) by gelatin sponge (BDNF-GS) with acute cochlear implantation (CI), and (2) through a mini-osmotic pump (BDNF-OP) with chronic CI. Outer HCs (OHCs), inner HCs (IHCs), Border, Phalangeal, Pillar, Deiters', and Hensen's cells were counted.

View Article and Find Full Text PDF

Background: In order to preserve residual hearing in patients with sensorineural hearing loss (SNHL) who receive a cochlear implant (CI), insertion trauma to the delicate structures of the cochlea needs to be minimized. The surgical approach comprises the conventional mastoidectomy-posterior tympanotomy (MPT) to arrive at the middle ear, followed by either a cochleostomy (CO) or the round window (RW) approach. Both techniques have their benefits and disadvantages.

View Article and Find Full Text PDF

Sensorineural hearing loss is mainly caused by irreversible damage to sensory hair cells (HCs). A subgroup of supporting cells (SCs) in the cochlea express leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker for tissue-resident stem cells. LGR5+ SCs could be used as an endogenous source of stem cells for regeneration of HCs to treat hearing loss.

View Article and Find Full Text PDF

Frequency discrimination ability varies within the normal hearing population, partially explained by factors such as musical training and age, and it deteriorates with hearing loss. Frequency discrimination, while essential for several auditory tasks, is not routinely measured in clinical setting. This study investigates cortical auditory evoked potentials in response to frequency changes, known as acoustic change complexes (ACCs), and explores their value as a clinically applicable objective measurement of frequency discrimination.

View Article and Find Full Text PDF

Treatment with neurotrophins prevents degeneration of spiral ganglion cells (SGCs) after severe hair cell loss. In a previous study we demonstrated a long-lasting effect with brain-derived neurotrophic factor (BDNF) after cessation of treatment. In that study the survival of the SGC cell bodies was examined.

View Article and Find Full Text PDF

Objectives/hypothesis: Two types of electrode arrays for cochlear implants (CIs) are distinguished: lateral wall and perimodiolar. Scalar translocation of the array can lead to intracochlear trauma by penetrating from the scala tympani into the scala vestibuli or scala media, potentially negatively affecting hearing performance of CI users. This systematic review compares the lateral wall and perimodiolar arrays with respect to scalar translocation.

View Article and Find Full Text PDF

In deaf subjects using a cochlear implant (CI) for hearing restoration, the auditory nerve is subject to degeneration, which may negatively impact CI effectiveness. This nerve degeneration can be reduced by neurotrophic treatment. Here, we compare the preservative effects of the naturally occurring tyrosine receptor kinase B (TrkB) agonist brain-derived neurotrophic factor (BDNF) and the small-molecule TrkB agonist 7,8,3'-trihydroxyflavone (THF) on the auditory nerve in deafened guinea pigs.

View Article and Find Full Text PDF

Severe damage to the organ of Corti leads to degeneration of the spiral ganglion cells (SGCs) which form the auditory nerve. This degeneration starts at the level of synaptic connection of the peripheral processes (PPs) of SGCs with the cochlear hair cells. It is generally thought that from this point SGC degeneration progresses in a retrograde fashion: PPs degenerate first, followed by the SGC soma with a delay of several weeks to many months.

View Article and Find Full Text PDF