As a member of the single-fluorophore genetically encoded calcium indicators (GECIs), jGCaMP7f is widely applied to investigate intracellular Ca concentrations. Here, we established an INS-jGCaMP7f knock-in H1 human embryonic stem cell (hESC) line by integrating jGCaMP7f gene into insulin locus via CRISPR/Cas9 system. The reporter cell line not only effectively labelled the insulin-producing cells induced from hESC, but also reflected the cytosolic change of Ca level in response to different stimuli.
View Article and Find Full Text PDFIn this protocol, we detail a seven-stage differentiation methodology for generating pancreatic delta cells (SC-delta cells) from human pluripotent stem cells (hPSCs). In the first step, definitive endoderm is generated by activin A and CHIR99021, followed by induction of primitive gut tube and posterior foregut by treatment with FGF7, SANT1, LDN193189, PdBU, and retinoic acid (RA). The subsequent endocrine generation and directed SC-delta cell induction is achieved by a combined treatment of the FGF7 with FGF2 during stage 4 and 5, together with RA, XXI, ALK5 inhibitor II, SANT1, Betacellulin and LDN193189.
View Article and Find Full Text PDFThe SFTPC gene is responsible for the production of the pulmonary surfactant protein C (SPC), a highly hydrophobic molecule that plays a crucial role in maintaining lung integrity through its influence on the synthesis of alveolar surfactant proteins. In this study, we harnessed the CRISPR/Cas9 system for precise genome editing to create a modified H1 human embryonic stem cell (hESC) line, incorporating the SFTPC-mCherry reporter construct. Therefore, the engineered SFTPC-mCherry knock-in (KI) hESC line can serve as an effective tool for tracking the expression patterns of the SFTPC gene as alveolar type 2 cells differentiate from hESCs.
View Article and Find Full Text PDFDysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established.
View Article and Find Full Text PDFAchaete-Scute Complex Homolog 1 (ASCL1) is a key regulator in the development and function of the nervous system, particularly in the process of neuronal and neuroendocrine cell differentiation. By employing the CRISPR/Cas9 system, we successfully established an ASCL1-mCherry knock-in human embryonic stem cell (hESC) line by inserting a P2A-mCherry fragment at the ASCL1 locus. The mCherry reporter effectively demonstrated the expression level of endogenous ASCL1 during the process of inducing pulmonary neuroendocrine cells (PNECs) from hESC.
View Article and Find Full Text PDFThe three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is a double-stranded DNA virus with an envelope. ASFV has almost the largest genome among all DNA viruses, and its mechanisms of immune evasion are complex. Better understanding of the molecular mechanisms of ASFV genes will improve vaccine design.
View Article and Find Full Text PDFForkhead box protein J1 (FOXJ1), a member of the forkhead family, is an important transcription factor regulating multiciliated cell differentiation and motile ciliogenic program. Here, we established a FOXJ1- EGFP knock-in human embryonic stem cell (hESC) line by inserting a P2A-EGFP gene cassette of FOXJ1 using CRISPR/Cas9 system. The reporter cell line retained a normal karyotype, expressed comparable pluripotent marker genes, and maintained differentiation potential.
View Article and Find Full Text PDFSignal Transduct Target Ther
April 2024
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells.
View Article and Find Full Text PDFBackground: Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems.
Methods: In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems.
Somatostatin (SST)-producing pancreatic delta-cells play an important role in maintaining the balance of insulin and glucagon secretion within the islets. This study aimed to generate a human embryonic stem cell (hESC) line with a SST-P2A-mCherry reporter using CRISPR/Cas9 system. The SST-P2A-mCherry reporter cell line was shown to maintain typical pluripotent characteristics and able to be induced into SST-producing pancreatic delta-cells.
View Article and Find Full Text PDFMany viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses.
View Article and Find Full Text PDFAfrican swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear.
View Article and Find Full Text PDFBiphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet β cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable β cells (RRβs), are responsible for 80% of insulin exocytosis events.
View Article and Find Full Text PDFObjective: Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown.
Methods: RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells.
Background: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood.
Results: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung.
During the production of fractured low-permeability gas condensate reservoir (FLPGCR), a phase transition takes place in both the formation and wellbore, resulting in multiphase flow when the pressure drops below the dew point pressure. Additionally, the presence of fractures causes the formation of stress-sensitive characteristics. Nevertheless, traditional analytical models, such as the two-region model or three-region model, overlook the coupling impact of the above factors, which could lead to incorrect pressure transient response and erroneous estimation of well and formation parameters.
View Article and Find Full Text PDFAlthough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the subcellular structural remodeling to invade multiple organs and cell types. Here, we unveil how SARS-CoV-2 boosts and utilizes filopodia to enter the target cells by real-time imaging. Using SARS-CoV-2 single virus-like particle (VLP) tracking in live cells and sparse deconvolution algorithm, we uncover that VLPs utilize filopodia to reach the entry site in two patterns, "surfing" and "grabbing", which avoid the virus from randomly searching on the plasma membrane.
View Article and Find Full Text PDFThe innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication.
View Article and Find Full Text PDFInfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to morbidity and mortality, with several clinical manifestations, and has caused a widespread pandemic. It has been found that type 2 diabetes is a risk factor for severe coronavirus disease 2019 (COVID-19) illness. Moreover, accumulating evidence has shown that SARS-CoV-2 infection can increase the risk of hyperglycemia and diabetes, though the underlying mechanism remains unclear because of a lack of authentic disease models to recapitulate the abnormalities involved in the development, regeneration, and function of human pancreatic islets under SARS-CoV-2 infection.
View Article and Find Full Text PDFCyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication.
View Article and Find Full Text PDFFoot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics.
View Article and Find Full Text PDFThe pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection.
View Article and Find Full Text PDFA new iridoid glycoside, named 6'-O-trans-feruloyl-8-epiloganic acid, together with fifteen known compounds were isolated from the twigs and leaves of Callicarpa nudiflora, a traditional Chinese medicine to treat inflammatory-related diseases. Their structures were identified by comprehensive spectroscopic analysis and comparison with reported data. Bioassay results revealed that twelve of the isolates could obviously inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.
View Article and Find Full Text PDF