We aimed to explore the association between plant-based dietary (PBD) patterns and obesity trajectories in middle-aged and elderly, as well as obesity trajectories linked to cardiovascular disease (CVD) risk. A total of 7108 middle-aged and elderly UK Biobank participants with at least three physical measurements were included. Dietary information collected at enrolment was used to calculate the healthful plant-based diet index (hPDI).
View Article and Find Full Text PDFAims: Ventricular arrhythmias (VAs), which can lead to sudden cardiac death, are the primary cause of mortality in patients with heart failure (HF). However, the precise mechanisms underlying these arrhythmias are not well understood. Recent studies have implicated tumour necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in pathological cardiac hypertrophy.
View Article and Find Full Text PDFBackground: The systemic immune-inflammation index (SII) is a proven, reliable inflammatory marker of the atherosclerotic process. Additionally, inflammation is one of the most important mechanisms of heart failure (HF) after myocardial infarction (MI). However, it is not clear whether SII is related to the risk of in-hospital HF in patients with MI.
View Article and Find Full Text PDFUneven Zn deposition and unfavorable side reactions have prevented the reversibility of the Zn anode. Herein, we design a rearranged (002) textured Zn anode inspired by a traditional curvature-enhanced adsorbate coverage (CEAC) process to realize the highly reversible Zn anode. The rearranged (002) textured structure directs superconformal Zn deposition by controlling the spatial deposition rate of the rearranged crystal planes, thereby promoting bottom-up "superfilling" of the 3D Zn skeletons.
View Article and Find Full Text PDFMedicine (Baltimore)
August 2024
Rationale: Turner syndrome is characterized by complete or partial loss of the second sex chromosome. In patients with Turner syndrome, hypertension is well described. However, the literature regarding malignant hypertension is scarce.
View Article and Find Full Text PDFRed tides not only destroy marine ecosystems but also pose a great threat to human health. The traditional anti-red tide materials are difficult to degrade effectively in the natural environment and there may be risks of environmental leakage and secondary pollution. Furthermore, they cannot reduce the toxicity of toxins released by algae.
View Article and Find Full Text PDFBackground: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive.
View Article and Find Full Text PDFRechargeable metal batteries have received widespread attention due to their high energy density by using pure metal as the anode. However, there are still many fundamental problems that need to be solved before approaching practical applications. The critical ones are low charge/discharge current due to slow ion transport, short cycle lifetime due to poor anode/cathode stability, and unsatisfied battery safety.
View Article and Find Full Text PDFThe deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14), a member of the JAB1/MPN/Mov34 metalloenzyme (JAMM) family, has been shown to function as an oncogene in various human cancers. However, the function of PSMD14 in glioma and the underlying mechanism remain unclear. In this study, our findings reveal a dramatic upregulation of PSMD14 in GBMs, which is associated with poor survival outcomes.
View Article and Find Full Text PDFMesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a critical factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC.
View Article and Find Full Text PDFPurpose: Systemic immune-inflammatory markers have a certain predictive role in pathological complete response (pCR) after neoadjuvant treatment (NAT) in breast cancer. However, there is a lack of research exploring the predictive value of markers after treatment.
Methods: This retrospective study collected data from 1994 breast cancer patients who underwent NAT.
Aqueous zinc ion batteries are gaining popularity due to their high energy density and environmental friendliness. However, random deposition of zinc ions on the anode and sluggish migration of zinc ions on the interface would lead to the growth of zinc dendrites and poor cycling performance. To address these challenges, we developed a fluorinated solid-state-electrolyte interface layer composed of Ca (PO ) F/Zn (PO ) via an in situ ion exchange strategy to guide zinc-ion oriented deposition and fast zinc ion migration on the anode during cycling.
View Article and Find Full Text PDFFast charging lithium (Li)-ion batteries are intensively pursued for next-generation energy storage devices, whose electrochemical performance is largely determined by their constituent electrode materials. While nanosizing of electrode materials enhances high-rate capability in academic research, it presents practical limitations like volumetric packing density and high synthetic cost. As an alternative to nanosizing, microscale electrode materials cannot only effectively overcome the limitations of the nanosizing strategy but also satisfy the requirement of fast-charging batteries.
View Article and Find Full Text PDFThe performance of zinc-ion batteries is severely hindered by the uncontrolled growth of dendrites and the severe side reactions on the zinc anode interface. To address these challenges, a weak-water-coordination electrolyte is realized in a peptone-ZnSO -based electrolyte to simultaneously regulate the solvation structure and the interfacial environment. The peptone molecules have stronger interaction with Zn ions than with water molecules, making them more prone to coordinate with Zn ions and then reducing the active water in the solvated sheath.
View Article and Find Full Text PDFOptical frequency combs with more than 10 W have paved the way for extreme ultraviolet combs generation by interaction with inert gases, leading to extreme nonlinear spectroscopy and the ultraviolet nuclear clock. Recently, the demand for an ultra-long-distance time and frequency space transfer via optical dual-comb proposes a new challenge for high power frequency comb in respect of power scaling and optical frequency stability. Here we present a frequency comb based on fiber chirped pulse amplification (CPA), which can offer more than 20 W output power.
View Article and Find Full Text PDFLow Coulombic efficiency, low-capacity retention, and short cycle life are the primary challenges faced by various metal-ion batteries due to the loss of corresponding active metal. Practically, these issues can be significantly ameliorated by compensating for the loss of active metals using pre-metallization techniques. Herein, the state-of-the-art development in various pr-emetallization techniques is summarized.
View Article and Find Full Text PDFBacterially induced sepsis requires rapid bacterial detection and identification. Hours count for critically ill septic patients, while current culture-based detection requires at least 10 h up to several days. Here, we apply a microfluidic device equipped with a bacterially activated, macrophage-membrane-coating on nanowired-Si adsorbent surfaces for rapid, bacterial detection and Gram-identification in bacterially contaminated blood.
View Article and Find Full Text PDFAqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their intrinsic safety, environmental friendliness, and low cost. However, the uncontrollable Zn dendrite growth during cycling is still a critical challenge for the long-term operation of ZIBs, especially under harsh lean-Zn conditions. Herein, we report nitrogen and sulfur-codoped carbon quantum dots (N,S-CDs) as zincophilic electrolyte additives to regulate the Zn deposition behaviors.
View Article and Find Full Text PDF(1) Background: The aim of this study was to explore the predictive ability of lymphocyte subsets for the prognosis of gastric cancer patients who underwent surgery and the prognostic value of CD19 (+) B cell combined with the Prognostic Nutritional Index (PNI). (2) Methods: This study involved 291 patients with gastric cancer who underwent surgery at our institution between January 2016 and December 2017. All patients had complete clinical data and peripheral lymphocyte subsets.
View Article and Find Full Text PDFLithium metal batteries (LMBs) are promising for next-generation high-energy-density batteries owing to the highest specific capacity and the lowest potential of Li metal anode. However, the LMBs are normally confronted with drastic capacity fading under extremely cold conditions mainly due to the freezing issue and sluggish Li desolvation process in commercial ethylene carbonate (EC)-based electrolyte at ultra-low temperature (e.g.
View Article and Find Full Text PDFFreshwater ecosystems are threatened by eutrophication, which causes persistent and harmful algal blooms. Filter-feeding bivalve mollusks and submerged macrophytes (SMs) alleviate the eutrophication effects by inhibiting phytoplankton biomass blooms. However, very little is known about whether and how the combined manipulation of filter-feeding bivalves and SMs control eutrophication and influence phytoplankton assemblages.
View Article and Find Full Text PDFIn this study, surimi products rich in lipids were prepared by using myofibril protein (MP) emulsion gel as carriers. The MP emulsion gel (MP concentration, c = 1.5%, oil fraction, ø = 0.
View Article and Find Full Text PDFRechargeable aqueous zinc-ion batteries (AZIBs) have attracted significant attention in large-scale energy storage systems due to their unique merits, such as intrinsic safety, low cost, and relatively high theoretical energy density. However, the dilemma of the uncontrollable Zn dendrites, severe hydrogen evolution reaction (HER), and side reactions that occur on the Zn anodes have hindered their commercialization. Herein, a state-of-the-art review of the rational design of highly reversible Zn anodes for high-performance AZIBs is provided.
View Article and Find Full Text PDF