Ying Yong Sheng Tai Xue Bao
April 2015
This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed.
View Article and Find Full Text PDFA quantitative structure-property relationship (QSPR) methodology that involves multilinear (Hansch-type) and nonlinear (radial basis function neural network (RBFNN)) approaches was performed to correlate the quantitative molar calibration factors (f(M)) of 140 organic compounds against structural factors. The statistical characteristics provided by the multiple linear model (R(2) = 0.963; RMS = 0.
View Article and Find Full Text PDFQuantitative structure-property relationship (QSPR) models have been used to predict and explain gas chromatographic data of quantitative calibration factors (f(M)). This method allows for the prediction of quantitative calibration factors in a variety of organic compounds based on their structures alone. Stepwise multiple linear regression (MLR) and non-linear radial basis function neural network (RBFNN) were performed to build the models.
View Article and Find Full Text PDFInductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu(+) ions with NH(3) in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of (47)Ti(16)O(+), (49)Ti(16)O(+) and (47)Ti(18)O(+) on (63)Cu(+) and (65)Cu(+) by detecting Cu(+) as the product cluster ion Cu(NH(3))(2)(+). As the signal of (63)Cu(NH(3))(2)(+) overlapped with that of (97)Mo(+) which existed in the samples, (65)Cu(NH(3))(2)(+) was detected at m/z 99.
View Article and Find Full Text PDF