Publications by authors named "Hui-qing Peng"

Bridge-assisted superexchange coupling capable of long-range electron transfer proves to be effective for charge separation. However, the exploitation of this photochemical process in engineering reactive oxygen species (ROS) production remains unexplored. Herein, piperazine serves as a bridging unit to facilitate a cascade electron transfer from the electron donor site (CO) to the acceptor site (CN) within the COCN molecule, ultimately boosting the generation of superoxide radicals (O ˙) and hydroxyl radicals (˙OH).

View Article and Find Full Text PDF

Layered double hydroxides (LDHs), especially those containing nickel (Ni), are increasingly recognized for their potential in photo(-/)electrocatalytic water oxidation due to the abundant availability of Ni, their corrosion resistance, and their minimal toxicity. This review provides a comprehensive examination of Ni-based LDHs in electrocatalytic (EC), photocatalytic (PC), and photoelectrocatalytic (PEC) water oxidation processes. The review delves into the operational principles, highlighting similarities and distinctions as well as the benefits and limitations associated with each method of water oxidation.

View Article and Find Full Text PDF

The incidence and mortality rates of skin melanoma have been increasing annually. Photodynamic therapy (PDT) enables effective destruction of tumor cells while minimizing harm to normal cells. However, traditional photosensitizers (PSs) suffer from photobleaching, photodegradation and the aggregation-caused quenching (ACQ) effect, and it is challenging for light to reach the deep layers of the skin to maximize the efficacy of PSs.

View Article and Find Full Text PDF

Type-I photosensitizers (PSs) can generate free radical anions with a broad diffusion range and powerful damage effect, rendering them highly desirable in various areas. However, it still remains a recognized challenge to develop pure Type-I PSs due to the inefficiency in producing oxygen radical anions through the collision of PSs with nearby substrates. In addition, regulating the generation of oxygen radical anions is also of great importance toward the control of photosensitizer (PS) activities on demand.

View Article and Find Full Text PDF

Catalytically inactive Zn is incorporated into cobalt hydroxide to synthesize hierarchical ZnCo-layered double hydroxide nanosheet networks supported on carbon fiber (ZnCo-LDH/CF). The incorporation of Zn is revealed to endow ZnCo-LDH/CF with significantly superior performance in the aspects of the activity and selectivity for methanol electrooxidation to formic acid and the boosting effect for cathodic hydrogen production compared with the counterpart without Zn. Density functional theory (DFT) calculation reveals that the incorporation of nonactive Zn can increase the density of states near the Fermi level of LDH (i.

View Article and Find Full Text PDF

An electrocatalytic methanol oxidation reaction (MOR) is proposed to replace oxygen evolution reaction (OER) in water electrolysis owing to the favorable thermodynamics of MOR than OER. However, there is still a competition between the MOR and the OER when the applied potential is in the conventional OER zone. How to inhibit OER while maintaining efficient MOR is an open and challenging question, and there are few reports focusing on this thus far.

View Article and Find Full Text PDF

Fungal infection poses and increased risk to human health. Photodynamic therapy (PDT) as an alternative antifungal approach garners much interest due to its minimal side effects and negligible antifungal drug resistance. Herein, we develop stereoisomeric photosensitizers ((Z)- and (E)-TPE-EPy) by harnessing different spatial configurations of one molecule.

View Article and Find Full Text PDF

The electrocatalytic reduction of CO is deemed to be a promising method to ease environmental and energy issues. However, achieving high efficiency and selectivity of CO electroreduction remains a bottleneck due to huge limitation of CO mass transfer and competition of hydrogen evolution reaction (HER) in aqueous solution. In this work, we propose to utilize triple-phase interface engineering over an InO electrode to enhance its CO reduction reaction (CORR) performance.

View Article and Find Full Text PDF

Organic near-infrared (NIR) emitters hold great promise for biomedical applications. Yet, most organic NIR fluorophores face the limitations of short emission wavelengths, low brightness, unsatisfactory processability, and the aggregation-caused quenching effect. Therefore, development of effective molecular design strategies to improve these important properties at the same time is a highly pursued topic, but very challenging.

View Article and Find Full Text PDF

Excitation energy transfer (EET) as a fundamental photophysical process is well-explored for developing functional materials with tunable photophysical properties. Compared to traditional fluorophores, aggregation-induced emission luminogens (AIEgens) exhibit unique advantages for building EET systems, especially serving as energy donors, due to their outstanding photophysical properties such as bright fluorescence in aggregation state, broad absorption and emission spectra, large Stokes shift, and high photobleaching resistance. In addition, the photophysical properties of AIEgens can be modulated by energy transfer for improved luminescence performance.

View Article and Find Full Text PDF

Development of stimuli-responsive materials with complex practical functions is significant for achieving bioinspired artificial intelligence. It is challenging to fabricate stimuli-responsive hydrogels showing simultaneous changes in fluorescence color, brightness, and shape in response to a single stimulus. Herein, a bilayer hydrogel strategy is designed by utilizing an aggregation-induced emission luminogen, tetra-(4-pyridylphenyl)ethylene (TPE-4Py), to fabricate hydrogels with the above capabilities.

View Article and Find Full Text PDF

Efficient photoisomerization of chromophores is important in living systems, and structural constraints of protein pocket on chromophores are the probable reason for moving their dynamic reaction equilibrium forward. On the other hand, photochemical reaction to switch a molecule from one isomer to the other with different geometry and property in a high yield will continue to play a vital role in the synthetic chemistry and material science. Because of the important role of efficient photoisomerization, a biomimetic approach for "seeing" and controlling the photoisomerization is developed by using the technology of aggregation-induced emission (AIE) with supramolecular chemistry.

View Article and Find Full Text PDF

Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high-spatial-resolution imaging, and 3D reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third-harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, a simple method for preparing organic nanocrystals based on an aggregation-induced emission (AIE) luminogen (DCCN) with bright near-infrared emission is successfully demonstrated.

View Article and Find Full Text PDF

The dynamic behavior of a macroscopic adhered hydrogel stabilized through controllable dynamic covalent interactions is reported. These interactions, involving the cross-linked formation of a hydrogel through reaction of a diacylhydrazine precursor with a tetraformyl partner, increase as a function of time. By using a contact time of 24 h and different compounds with recognized aggregation-induced emission features (AIEgens), it proves possible to create six laminated acylhydrazone hydrogels displaying different fluorescent colors.

View Article and Find Full Text PDF

Development of high-performance and low-cost nonprecious metal electrocatalysts is critical for eco-friendly hydrogen production through electrolysis. Herein, a novel nanoflower-like electrocatalyst comprising few-layer nitrogen-doped graphene-encapsulated nickel-copper alloy directly on a porous nitrogen-doped graphic carbon framework (denoted as Ni Cu @ NG-NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere. The introduction of Cu can effectively modulate the morphologies and hydrogen evolution reaction (HER) performance.

View Article and Find Full Text PDF

Many highly ordered structures with smart functions are generated by self-assembly with stimuli responsiveness. Despite that electron microscopes enable us to directly observe the end products, it is hard to visualize the initial step and the kinetic stimuli-responsive behavior of self-assembly. Here, we report the design and synthesis of stereogenic amphiphiles, namely, ( Z)-TPE-OEG and ( E)-TPE-OEG, with aggregation-induced emission (AIE) characteristics from the hydrophobic tetraphenylethene core and thermoresponsive behavior from the hydrophilic oligoethylene glycol monomethyl ether chain.

View Article and Find Full Text PDF

Development of high-performance and cost-effective non-noble metal electrocatalysts is pivotal for the eco-friendly production of hydrogen through electrolysis and hydrogen energy applications. Herein, the synthesis of an unconventional nickel nitride nanostructure enriched with nitrogen vacancies (NiN ) through plasma-enhanced nitridation of commercial Ni foam (NF) is reported. The self-supported NiN /NF electrode can deliver a hydrogen evolution reaction (HER) activity competitive to commercial Pt/C catalyst in alkaline condition (i.

View Article and Find Full Text PDF

Exploring of new catalyst activation principle holds a key to unlock catalytic powers of cheap and earth-abundant materials for large-scale applications. In this regard, the vacancy defects have been proven to be effective to initiate catalytic active sites and endow high electrocatalytic activities. However, such electrocatalytically active defects reported to date have been mostly formed by anion vacancies.

View Article and Find Full Text PDF

Artificial light-harvesting nanoparticles were prepared from supramolecular polymers comprised of pillar[5]arene with anthracene-derived donors and acceptors through host-guest interactions. The resulting water-dispersible nanoparticles displayed efficient energy transfer and excellent light harvesting ability in part because the steric bulk of pillar[5]arene suppressed the self-quenching of the chromophores.

View Article and Find Full Text PDF

A novel mesoporous nanosheet networked hybrid comprising Co O and Co (PO ) is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co O to Co (PO ) , together with the special networked structure and the porous nature of the nanosheets enable the Co (PO ) -Co O hybrid to have a high oxygen evolution reaction (OER) activity and outstanding stability in alkaline electrolyte, e.g.

View Article and Find Full Text PDF

Geometric (Z)- and (E)-isomers play important but different roles in life and material science. The design of new (Z)-/(E)- isomers and study of their properties, behaviors, and interactions are crucially important in molecular engineering. However, difficulties with their separation and structure confirmation limit their structural diversity and functionality in scope.

View Article and Find Full Text PDF

Novel 3D Ni Co Se mesoporous nanosheet networks with tunable stoichiometry are successfully synthesized on Ni foam (Ni Co Se MNSN/NF with x ranging from 0 to 0.35). The collective effects of special morphological design and electronic structure engineering enable the integrated electrocatalyst to have very high activity for hydrogen evolution reaction (HER) and excellent stability in a wide pH range.

View Article and Find Full Text PDF

The preparation of functionalized bis-ureidopyrimidinones (Bis-UPy) through the thiol-yne reaction is described. Various Bis-UPys with different functional groups were synthesized by using the readily available functionalized alkynes and UPy-thiol to affirm the simplicity and versatility of the methodology.

View Article and Find Full Text PDF

Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers have been prepared for the first time by using the miniemulsion method. Nanospheres containing chromophores with high fluorescence quantum yields were fabricated to mimic the natural light-harvesting system.

View Article and Find Full Text PDF