Publications by authors named "Hui-hui Li"

UDP-glucuronosyltransferases(UGTs) are the main phase Ⅱ metabolizing enzymes in the human body, participating in the glucuronidation of various chemicals in the body. Traditional Chinese medicine(TCM) ingredients affect the activities of UGTs involved in drug metabolism, and the fluctuations in the blood concentrations of drugs metabolized by UGTs will lead to the risk of TCM-TCM or TCM-chemical drug interaction, which will cause drug safety problems and affect drug efficacy. Therefore, it is essential to explore the effect of TCM ingredients on the activities of UGTs.

View Article and Find Full Text PDF

Preeclampsia (PE) is a hypertensive disorder during human pregnancy. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Exogenous and endogenous AhR ligands can induce hypertension in male rats and mice.

View Article and Find Full Text PDF

Bioproduction of chemicals by using engineered bacteria is promising for a circular economy but challenged the instability of the introduced plasmid by conventional methods. Here, we developed a two-plasmid INTEGRET system to reliably integrate the targeted gene into the genome, making it a powerful strain for efficient and steady bioproduction without requiring antibiotic addition. The INTEGRET system allows for gene insertion at over 75% inserting efficiency and flexibly controllable gene dosages.

View Article and Find Full Text PDF

Deep learning methods have been applied when working to enhance the prediction accuracy of traditional statistical methods in the field of plant breeding. Although deep learning seems to be a promising approach for genomic prediction, it has proven to have some limitations, since its conventional methods fail to leverage all available information. Multimodal deep learning methods aim to improve the predictive power of their unimodal counterparts by introducing several modalities (sources) of input information.

View Article and Find Full Text PDF

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections.

View Article and Find Full Text PDF

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in .

View Article and Find Full Text PDF

Background: Preeclampsia (PE) is one hypertensive disorder and a leading cause of maternal and fetal mortality and morbidity during human pregnancy. Aryl hydrocarbon receptor (AhR) is a transcription factor, which regulates vascular functions. Exogenous and endogenous AhR ligands can induce hypertension in animals.

View Article and Find Full Text PDF
Article Synopsis
  • * These nanotubes require only a 171 mV overpotential to produce a current density of 10 mA/cm² and show stable performance for up to 50 hours under the same conditions.
  • * The enhanced OER performance is attributed to the large specific surface area and altered electronic structure due to the doping of tellurium (Te) cations.
View Article and Find Full Text PDF

Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, , a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes.

View Article and Find Full Text PDF

Purpose: Constipation is a common complication of diabetic patients, which has a negative impact on their own health. This study aims to establish and internally validate the risk nomogram of constipation in patients with type 2 diabetes mellitus (T2DM) and to test its predictive ability.

Patients And Methods: This retrospective study included 746 patients with T2DM at two medical centers.

View Article and Find Full Text PDF

Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms.

View Article and Find Full Text PDF

Upgrading carbon dioxide/monoxide to multi-carbon C products using renewable electricity offers one route to more sustainable fuel and chemical production. One of the most appealing products is acetate, the profitable electrosynthesis of which demands a catalyst with higher efficiency. Here, a coordination polymer (CP) catalyst is reported that consists of Cu(I) and benzimidazole units linked via Cu(I)-imidazole coordination bonds, which enables selective reduction of CO to acetate with a 61% Faradaic efficiency at -0.

View Article and Find Full Text PDF

Angelicae Sinensis Radix, as a medicinal and edible Chinese medicinal herb, is widely used in clinical practice. It is mainly cultivated in Minxian, Tanchang, Zhangxian and Weiyuan counties of Gansu province. In recent years, with the comprehensive and in-depth study of Angelicae Sinensis Radix in China and abroad, its chemical composition, pharmacological effects and application and development have attracted much attention.

View Article and Find Full Text PDF

Beyond the state-of-the-art Cd-containing quantum wires (QWs), heavy-metal-free semiconductor QWs, such as ZnSe, are of great interest for next-generation environmental-benign applications. Unfortunately, simultaneous, on-demand manipulation of their radial and axial sizes-that allows strong quantum confinement in the blue-light region-has so far been challenging. Here we present a two-step catalyzed growth strategy that enables independent, high-precision and wide-range controls over the diameter and length of ZnSe QWs.

View Article and Find Full Text PDF

Designing polytypic homojunction is an efficient way to regulate photogenerated electrons and holes, thereafter bringing desired physical and chemical properties and being attractive photocatalysts for solar-to-hydrogen conversion. However, the high-yield and controllable synthesis of well-defined polytypes especially for multinary chalcogenide - the fundamental factor favoring highly efficient solar-to-hydrogen conversion - has yet to be achieved. Here, we report a general colloidal method to construct a library of polytypic copper-based quaternary sulfide nanocrystals, including CuZnSnS, CuCdSnS, CuCoSnS, CuMnSnS, CuFeSnS, CuInSnS and CuGaSnS, which can be synthesized by selective epitaxial growth of kesterite phase on wurtzite structure.

View Article and Find Full Text PDF

species are critically involved in elemental biogeochemical cycling and environmental bioremediation processes via extracellular electron transfer (EET), but the underlying biomolecular mechanisms remain elusive due to lack of effective analytical tools to explore into complicated EET networks. Here, a simple and highly efficient cytosine base editor was developed for engineering of the slow-growing (a doubling time of 5 h with acetate as the electron donor and fumarate as the electron acceptor). A single-plasmid cytosine base editor (pYYDT-BE) was constructed in by fusing cytosine deaminase, Cas9 nickase, and a uracil glycosylase inhibitor.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) can cause placental dysfunctions, which may result in pregnancy complications. Long noncoding RNAs (lncRNAs) are actively involved in the regulation of immune responses during pregnancy. The present study aimed to determine the lncRNA expression profiles in placentas from women with SLE to gain new insights into the underlying molecular mechanisms in SLE pregnancies.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) may cause pathogenic changes in the placentas during human pregnancy, such as decreased placental weight, intraplacental hematoma, ischemic hypoxic change, placental infarction, and decidual vasculopathy, which contribute to high maternal and fetal mortality and morbidity. Sex-specific adaptations of the fetus are associated with SLE pregnancies. The present study aimed to determine the transcriptomic profiles of female and male placentas from women with SLE.

View Article and Find Full Text PDF

Although previous studies demonstrate that trehalose can help maintain glucose homeostasis in healthy humans, its role and joint effect with glutamate on diabetic retinopathy (DR) remain unclear. We aimed to comprehensively quantify the associations of trehalose and glutamate with DR. This study included 69 pairs of DR and matched type 2 diabetic (T2D) patients.

View Article and Find Full Text PDF

Recycling of deactivated palladium (Pd)-based catalysts can not only lower the economic cost of their industrial use but also save the cost for waste disposal. Considering that the sulfur-poisoned Pd (PdS) with a strong Pd-S bond is difficult to regenerate, here, we propose a direct reuse of such waste materials as an efficient catalyst for decontamination via Fenton-like processes. Among the PdS materials with different poisoning degrees, PdS stood out as the most active catalyst for peroxymonosulfate activation, exhibiting pollutant-degradation performance rivaling the Pd and Co benchmarks.

View Article and Find Full Text PDF

Antimicrobial-resistant pathogens in the environment and wastewater treatment systems, many of which are also important pollutant degraders and are difficult to control by traditional disinfection approaches, have become an unprecedented treat to ecological security and human health. Here, we propose the adoption of genetic editing techniques as a highly targeted, efficient and simple tool to control the risks of environmental pathogens at the source. An 'all-in-one' plasmid system was constructed in Aeromonas hydrophila to accurately identify and selectively inactivate multiple key virulence factor genes and antibiotic resistance genes via base editing, enabling significantly suppressed bacterial virulence and resistance without impairing their normal phenotype and pollutant-degradation functions.

View Article and Find Full Text PDF

Preeclampsia (PE) is a hypertensive pregnancy, which is a leading cause of maternal and fetal morbidity and mortality during pregnancy. L-Tryptophan (Trp) is an essential amino acid, which can be metabolized into various biologically active metabolites. However, the levels of many circulating Trp-metabolites in human normotensive pregnancies (NT) and PE are undetermined.

View Article and Find Full Text PDF

Background: Hyperhomocysteinemia is associated with autoimmune diseases such as ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). Current findings regarding plasma/serum homocysteine (HCY) levels in AS patients are inconsistent. This study aims to systematically evaluate the association between circulating HCY levels and AS.

View Article and Find Full Text PDF

LncRNA PVT1 has been demonstrated to be upregulated in acute myeloid leukaemia (AML) patients and indicates a poor prognosis. Nevertheless, its role in AML remains obscure. This study investigated the regulatory role and potential mechanisms of PVT1 in the progression of AML.

View Article and Find Full Text PDF

Background: Although several brain networks play important roles in cervical dystonia (CD) patients, regional homogeneity (ReHo) changes in CD patients have not been clarified. We investigated to explore ReHo in CD patients at rest and analyzed its correlations with symptom severity as measured by Tsui scale.

Methods: A total of 19 CD patients and 21 gender-, age-, and education-matched healthy controls underwent fMRI scans at rest state.

View Article and Find Full Text PDF