Publications by authors named "Hui-Zhen Hu"

Objective: This study aims to establish an effective and stable periodontal ligament cell line stably expressing human telomerase reverse transcriptase (hTERT) gene by using the adenovirus method.

Methods: Polymerase chain reaction (PCR) was used to amplify the full length of hTERT gene to construct recombinant adenovirus plasmid pAd-pshuttle-cmv-hTERT. Packaged adenovirus particles were used for infection of human periodontal ligament cells.

View Article and Find Full Text PDF

The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database.

View Article and Find Full Text PDF

MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression.

View Article and Find Full Text PDF

MiRNAs associated with the metastasis of lung cancer remain largely unexplored. In this study, gene and miRNA expression profiling were performed to analyze the global expression of mRNAs and miRNAs in human high- and low-metastatic lung cancer cell strains. By developing an integrated bioinformatics analysis, six miRNAs (miR-424-3p, miR-450b-5p, miR-335-5p, miR-34a-5p, miR-302b-3p and miR-206) showed higher target gene degrees in the miRNA-gene network and might be potential metastasis-related miRNAs.

View Article and Find Full Text PDF

Aim: To compare the efficacy and safety of biological agents for the treatment of active ulcerative colitis (UC).

Methods: PubMed, MEDLINE, EMBASE and the Cochrane library were searched to screen relevant articles from January 1996 to August 2014. The mixed treatment comparison meta-analysis within a Bayesian framework was performed using WinBUGS14 software.

View Article and Find Full Text PDF

A microarray analysis of differential genes by curcumin treatment was performed and the crucial pathways associated with non-small cell lung cancer (NSCLC) were investigated. Total RNAs from 0, 10 or 20 μM curcumin treated NSCLC 95D cells were used to prepare microarray chips. The differentially expressed genes (DEGs) were identified using the RankProducts package and their function was predicted by DAVID and gene set enrichment analysis.

View Article and Find Full Text PDF

Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis.

View Article and Find Full Text PDF

Metastasis is a common feature of lung cancer, involving relationships between genes, proteins and miRNAs. However, lack of early detection and limited options for targeted therapies are weaknesses that cantribute to the dismal statistics observed in lung cancer metastasis. In this paper, gene expression profiling analysis for genes differentially expressed between high- (95D) and low-metastatic lung cancer cell lines (95C) was performed using gene annotation, pathway analysis, literature mining, and the integrated regulatory network as well as motif analysis of miRNA-DEG and TF-DEG.

View Article and Find Full Text PDF

Objective: To explore the expression of ezrin protein in human non-small cell lung cancer (NSCLC) tissues and lung cancer cell lines, and the association between the expression of ezrin protein and the expression of E-cadherin and CD44V6 proteins.

Methods: The expression of ezrin protein and mRNA in lung cancer cell lines was detected by RT-PCR and Western blotting. Ezrin, E-cadherin and CD44V6 were detected by immunohistochemical SP staining in tumor tissues from 150 lung cancer cases and in adjacent normal lung tissues from 30 patients.

View Article and Find Full Text PDF

Objective: To investigate the relationship between p16 expression and cell proliferation and prognosis in gastric cancer patients.

Methods: Gastric cancer cell lines SGC-7901, MKN45, MKN28, human embryonic kidney cell line HEK293, human fibroblast cell line MRC-5, and surgical specimens of gastric carcinoma and adjacent normal gastric mucosa from 65 patients were included in this study. RT-PCR, MTT and FCM assays were used to detect p16 expression in gastric cancer cell lines and surgical specimens of gastric cancer.

View Article and Find Full Text PDF

We previously reported that curcumin inhibited lung cancer A549 cells growth and promoted cell apoptosis in vitro. In this study, we further examined the apoptosis-related parameters, including lysosomal damage and cathepsin activation, in A549 cells exposed to curcumin. We found that curcumin caused lysosomal membrane permeabilization (LMP) and cytosolic relocation of cathepsin B (cath B) and cathepsin D (cath D).

View Article and Find Full Text PDF

Rac1, an intracellular signal transducer, regulates a variety of cell functions, including the organization of the cytoskeleton, cell migration, and invasion. Overexpression of Rac1 has been reported in several human cancers. However, the underlying mechanisms are not well understood.

View Article and Find Full Text PDF