Publications by authors named "Hui-Yan Lei"

Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Leucyl-tRNA synthetases (LeuRSs) are essential for attaching leucine to its corresponding tRNA, consisting of a catalytic domain for aminoacylation and a CP1 editing domain.
  • The CP1 domain must swing to connect with the aminoacylation domain, and its structure, particularly the CP1 hairpin, plays a vital role in this movement and their interaction.
  • Deleting or substituting the CP1 hairpin in human LeuRS resulted in loss of key functions like tRNA binding, while the hairpin from yeast LeuRS could partially restore function, highlighting the importance of specific amino acids in maintaining LeuRS's activity.
View Article and Find Full Text PDF

Stromal cell-derived factor-1 (SDF-1) plays critical roles in vascular development and hematopoiesis. Here, we investigated the function of SDF-1 rs1801157G/A polymorphism in various immune cells and examined its association with susceptibility to coronary artery disease (CAD). Protein and mRNA levels of SDF-1 were tested in peripheral CD4+ T cell, CD8+ T cells, monocytes, and natural killer (NK) T cells from healthy donors with different genotypes of rs1801157G/A polymorphism.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) are remarkable enzymes that are in charge of the accurate recognition and ligation of amino acids and tRNA molecules. The greatest difficulty in accurate aminoacylation appears to be in discriminating between highly similar amino acids. To reduce mischarging of tRNAs by non-cognate amino acids, aaRSs have evolved an editing activity in a second active site to cleave the incorrect aminoacyl-tRNAs.

View Article and Find Full Text PDF

The free form of human cytoplasmic arginyl-tRNA synthetase (hcArgRS) is hypothesized to participate in ubiquitin-dependent protein degradation by offering arginyl-tRNA(Arg) to arginyl-tRNA transferase (ATE1). We investigated the effect of hemin on hcArgRS based on the fact that hemin regulates several critical proteins in the "N-end rule" protein degradation pathway. Extensive biochemical evidence has established that hemin could bind to both forms of hcArgRS in vitro.

View Article and Find Full Text PDF