Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes.
View Article and Find Full Text PDFOxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming.
View Article and Find Full Text PDFThe guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na and K on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA.
View Article and Find Full Text PDFLupus nephritis (LN) is one of the most severe complications in patients with systemic lupus erythematosus (SLE). Traditionally, LN is regarded as an immune complex (IC) deposition disease led by dsDNA-anti-dsDNA-complement interactions in the subendothelial and/or subepithelial basement membrane of glomeruli to cause inflammation. The activated complements in the IC act as chemoattractants to chemically attract both innate and adaptive immune cells to the kidney tissues, causing inflammatory reactions.
View Article and Find Full Text PDFBackground: Pulmonary arterial hypertension (PAH), defined as the presence of a mean pulmonary artery pressure > 20 mmHg, pulmonary artery wedge pressure ≤ 15 mmHg, and pulmonary vascular resistance (PVR) > 2 Wood units based on expert consensus, is characterized by a progressive and sustained increase in PVR, which may lead to right heart failure and death. PAH is a well-known complication of connective tissue diseases (CTDs), such as systemic sclerosis, systemic lupus erythematosus, Sjogren's syndrome, and other autoimmune conditions. In the past few years, tremendous progress in the understanding of PAH pathogenesis has been made, with various novel diagnostic and screening methods for the early detection of PAH proposed worldwide.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2022
Background: The roles of plasma cell-free (pcf) mitochondrial DNA (mtDNApcf) and nuclear DNA (nDNApcf) in the pathogenesis of systemic lupus erythematosus (SLE) remain unclear. We analyzed the relative copies of mtDNApcf and nDNApcf and investigated their association with the levels of plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasma malondialdehyde (MDA) and mRNA of leukocyte C-type lectin domain family 5 member A (CLEC5A) in SLE patients.
Methods: A total of 80 SLE patients and 43 healthy controls (HCs) were enrolled.
Telomeric repeat-containing RNA (TERRA) has been suggested to participate in telomere maintenance. TERRA consisting of UUAGGG repeats is capable of forming an intermolecular G-quadruplex (GQ) with single-stranded TTAGGG-repeat DNA in the telomere 3' overhang. To explore the structural features and potential functions of this DNA-RNA hybrid GQ (HGQ), we used single-molecule FRET to study the folding patterns of DNA with four to seven telomeric tandem repeats annealed with a short RNA consisting of two or five telomeric repeats.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors.
View Article and Find Full Text PDFTelomeres are hot spots for mutagenic oxidative and methylation base damage due to their high guanine content. We used single-molecule fluorescence resonance energy transfer detection and biochemical assays to determine how different positions and types of guanine damage and mutations alter telomeric G-quadruplex structure and telomerase activity. We compared 15 modifications, including 8-oxoguanine (8oxoG), -6-methylguanine (O6mG), and all three possible point mutations (G to A, T, and C) at the 3' three terminal guanine positions of a telomeric G-quadruplex, which is the critical access point for telomerase.
View Article and Find Full Text PDFThe advancement of technology has led to an increasingly permeable boundary between work and off-work time. As such, employees may face pressure to immediately respond to work-related information and communication technology (ICT) messages during off-work time. This study examines the mediating role of workplace telepressure on the relationships between ICT availability demands with burnout and work-family conflict, as well as the moderating effects of self-regulation on these relationships.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is an archetype of systemic autoimmune disease, characterized by the presence of diverse autoantibodies and chronic inflammation. There are multiple factors involved in lupus pathogenesis, including genetic/epigenetic predisposition, sexual hormone imbalance, environmental stimulants, mental/psychological stresses, and undefined events. Recently, many authors noted that "inflammaging", consisting of immunosenescence and inflammation, is a common feature in aging people and patients with SLE.
View Article and Find Full Text PDFAutophagy is the spontaneous degradation of intracellular proteins and organelles in response to nutrient deprivation. The phagocytosis of iron oxide nanoparticles (IONPs) results in intracellular degradation that can be exploited for use in cancer treatment. Non-invasive magnetic control has emerged as an important technology, with breakthroughs achieved in areas such as magneto-thermal therapy and drug delivery.
View Article and Find Full Text PDFWe evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCR) and basal extracellular acidification rate (ECAR) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025).
View Article and Find Full Text PDFOur laboratory is interested in developing methods that can be used for the control of gene expression. In this work, we are investigating the reaction of an intramolecular complex containing a triplex-duplex junction with partially complementary strands. We used a combination of isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectroscopy techniques to determine standard thermodynamic profiles for these targeting reactions.
View Article and Find Full Text PDFNucleic Acids Res
November 2017
Telomeres are highly susceptible to oxidative DNA damage, which if left unrepaired can lead to dysregulation of telomere length homeostasis. Here we employed single molecule FRET, single molecule pull-down and biochemical analysis to investigate how the most common oxidative DNA lesions, 8-oxoguanine (8oxoG) and thymine glycol (Tg), regulate the structural properties of telomeric DNA and telomerase extension activity. In contrast to 8oxoG which disrupts the telomeric DNA structure, Tg exhibits substantially reduced perturbation of G-quadruplex folding.
View Article and Find Full Text PDFWe report the thermodynamic contributions of loop length and loop sequence to the overall stability of DNA intramolecular pyrimidine triplexes. Two sets of triplexes were designed: in the first set, the C loop closing the triplex stem was replaced with CTC loops (n = 1-5), whereas in the second set, both the duplex and triplex loops were replaced with a GCAA or AACG tetraloop. For the triplexes with a CTC loop, the triplex with five bases in the loop has the highest stability relative to the control.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2016
Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG) regulates telomere elongation by human telomerase.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2017
We evaluated plasma IL-10, IFN-alpha, IL-23, IFN-gamma, IP-10, MCP-1, 8-OHdG, leukocyte mtDNA, serum anti-dsDNA antibodies and disease activity index (SLEDAI) in SLE patients. 93 patients (35 nephritis, 4 under dialysis, 5 under rituximab) and 50 healthy controls were recruited. Compared with healthy controls, SLE patients had higher IL-10, IFN-alpha, IL-23, IFN-gamma, IP-10 and MCP-1 (<0.
View Article and Find Full Text PDFNon-coding RNAs must fold into specific structures that are stabilized by metal ions and other co-solutes in the cell's interior. Large crowder molecules such as PEG stabilize a bacterial group I ribozyme so that the RNA folds in low Mg concentrations typical of the cell's interior. To understand the thermodynamic origins of stabilization by crowder molecules, small angle X-ray scattering was used to measure the folding and helix assembly of a bacterial group I ribozyme at different temperatures and in different MgCl and polyethylene glycol (PEG) concentrations.
View Article and Find Full Text PDFThe role of suppressor of cytokine signaling (SOCS) in maintaining the immunotolerance of renal allograft is unknown. To clarify this, peripheral blood mononuclear cells (PBMCs) from renal transplant patients with or without rejection were analyzed for the expression of SOCS family proteins by cell culture, immunoblot, flowcytometry and quantitative reverse transcription-polymerase chain reaction (qPCR). Patients with renal graft rejection expressed lower levels of SOCS1 while those without rejection showed a higher SOCS1 expression in the PBMC either on stimulation or not.
View Article and Find Full Text PDFSLE is characterized by an increased production of detrimental autoantigens, exaggerated effects of pro-inflammatory cytokines, dysregulated functioning of immunocompetent cells including lymphocytes and leukocytes, and devastating tissue and organ damage. All of these derangements can be potentiated or attenuated by the abnormal energy expenditure and overproduction of reactive oxygen species (ROS). Mitochondrial heteroplasmy or dysfunction has been recognized to play a role in these abnormalities.
View Article and Find Full Text PDFWe investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM).
View Article and Find Full Text PDFWe investigated whether the C1245G polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) gene confers the susceptibility to systemic lupus erythematosus (SLE) occurrence of lupus nephritis and affects the plasma level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in patients with SLE. A total of 45 healthy controls and 85 SLE patients were recruited. The C1245G polymorphism of the hOGG1 gene was determined by direct sequencing.
View Article and Find Full Text PDF