Publications by authors named "Hui-Qiong Wang"

The interface of two dissimilar materials gives rise to a myriad of interesting structural, magnetic, and electronic properties that may be utilized to produce novel materials with unique characteristics and functions. In particular, growing a cubic oxide film on top of a hexagonal oxide substrate results in such unique properties due to the conflict of their respective stabilization mechanisms within the interface layer. This study aims to elucidate the electronic properties of the interface between hexagonal ZnO and cubic NiO by analyzing the interface electronic states within epitaxial NiO films grown on ZnO substrates, expressed in the form of ultraviolet photoemission spectroscopy (UPS) for valence band structure and X-ray absorption spectroscopy (XAS) spectra for conduction band structure.

View Article and Find Full Text PDF

The realization of ferromagnetic insulating ground state is a critical prerequisite for spintronic applications. By applying electric field-controlled ionic liquid gating (ILG) to stoichiometry LaSrCoO thin films, the doping of protons (H) has been achieved for the first time. Furthermore, a hitherto-unreported ferromagnetic insulating phase with a remarkably high up to 180 K has been observed which can be attributed to the doping of H and the formation of oxygen vacancies (V).

View Article and Find Full Text PDF

Superlattices constructed with the wide-band-gap semiconductor ZnO and magnetic oxide FeO, both in the wurtzite structure, have been investigated using spin-polarized first-principles calculations. The structural, electronic and magnetic properties of the (ZnO)/(w-FeO) superlattices were studied in great detail. Two different interfaces in the (ZnO)/(w-FeO) superlattices were identified and they showed very different magnetic and electronic properties.

View Article and Find Full Text PDF

The preparation of two-dimensional magnetic materials is a key process to their applications and the study of their structure and morphology plays an important role in the growth of high-quality thin films. Here, the growth, structure, and morphology of CrTe films grown by molecular beam epitaxy on mica with variations of Te/Cr flux ratio, growth temperature, and film thickness have been systematically investigated by scanning tunneling microscopy, reflection high-energy electron diffraction, scanning electron microscope, and X-ray photoelectron spectroscopy. We find that a structural change from multiple phases to a single phase occurs with the increase in growth temperature, irrespective of the Cr/Te flux ratios, which is attributed to the desorption difference of Te atoms at different temperatures, and that the surface morphology of the films grown at relatively high growth temperatures (≥ 300 °C) exhibits a quasi-hexagonal mesh-like structure, which consists of nano-islands with bending surface induced by the screw dislocations, as well as that the films would undergo a growth-mode change from 2D at the initial stage in a small film thickness (2 nm) to 3D at the later stage in thick thicknesses (12 nm and 24 nm).

View Article and Find Full Text PDF

Hot-carrier devices are promising alternatives for enabling path breaking photoelectric conversion. However, existing hot-carrier devices suffer from low efficiencies, particularly in the infrared region, and ambiguous physical mechanisms. In this work, the competitive interfacial transfer mechanisms of detrapped holes and hot electrons in hot-carrier devices are discovered.

View Article and Find Full Text PDF

The anisotropy engineering of nanoporous zinc oxide (ZnO) frameworks has been performed by lattice dynamics simulation. A series of zinc oxide (ZnO) nanoporous framework structures was designed by creating nanopores with different sizes and shapes. We examined the size effects of varying several features of the nanoporous framework (namely, the removal of layers of atoms, surface-area-to-volume ratio, coordination number, porosity, and density) on its mechanical properties (including bulk modulus, Young's modulus, elastic constant, and Poisson ratio) with both lattice dynamics simulations.

View Article and Find Full Text PDF

The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemission spectroscopy is a powerful technique to probe electronic structures of valence band.

View Article and Find Full Text PDF

The magnetic and electronic properties of boron-doped SrTiO have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO can have nonmagnetic, ferromagnetic or antiferromagnetic alignment.

View Article and Find Full Text PDF

Surface polarity with different crystal orientations has been demonstrated as a crucial parameter in determining the physical properties and device applications in many transition metal oxide and semiconductor compound systems. The influences of surface polarity on electronic structures in nitrogen-incorporated ZnO lattices have been investigated in the present work. The successful doping of nitrogen atoms in ZnO lattices is suggested by the existence of N-related chemical bonds obtained from X-ray photoelectron spectroscopy analysis where a pronounced N-Zn peak intensity has been observed in the (000\bar 1)-terminated polar ZnO compound compared with the (10\bar 10)-terminated nonpolar ZnO compound.

View Article and Find Full Text PDF

The correlation between electronic properties and epitaxial strain in a cation-deficient system has rarely been investigated. Cation-deficient SrVO films are taken as a model system to investigate the strain-dependent electrical and electronic properties. Using element- and charge-sensitive soft X-ray absorption, V L-edge absorption measurements have been performed for SrVO films of different thicknesses capped with 4 u.

View Article and Find Full Text PDF

We have studied the mechanical properties of a two-dimensional (2D) boron nanoribbon network (BNRN) subjected to a uniaxial or a biaxial tensile strain using first principles calculations. The results show that the 2D BNRN is super-stretchable. The critical tensile strains of the BNRN in the χ-h1 phase along the a- and b-directions are 0.

View Article and Find Full Text PDF

Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.

View Article and Find Full Text PDF

Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored.

View Article and Find Full Text PDF

Wurtzite ZnO films were grown on MgO(111) substrates by plasma-assisted molecular beam epitaxy (MBE). Different initial growth conditions were designed to monitor the film quality. All the grown ZnO films show highly (0001)-oriented textures without in-plane rotation, as illustrated by in situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray diffraction (XRD).

View Article and Find Full Text PDF

New crystal structures of fully hydrogenated borophene (borophane) have been predicted by first principles calculation. Comparing with the chair-like borophane (C-boropane) that has been reported in literature, we obtained four new borophane conformers with much lower total-energy. The most stable one, washboard-like borophane (W-borophane), has energy about 113.

View Article and Find Full Text PDF

We have studied the mechanical properties and phonon dispersions of fully hydrogenated borophene (borophane) under strains by first principles calculations. Uniaxial tensile strains along the a- and b-direction, respectively, and biaxial tensile strain have been considered. Our results show that the mechanical properties and phonon stability of borophane are both highly anisotropic.

View Article and Find Full Text PDF

In this Letter, we report on the structural and optical characteristics of ZnO films with a wurtzite structure grown on MgO (001) substrates with cubic structures. The ZnO films were prepared through the molecular beam epitaxy method, and growth orientation transformation from [0001] to [10-10] direction was observed with the change of growth temperature and thickness. The x-ray diffraction pole figures and in situ RHEED patterns demonstrated that the rotational relationship among grains within the ZnO films appeared in a typical two-fold rotation of about 30° for the [0001] growth orientation and four-fold rotation of about 30° or 60° for the [10-10] growth orientation, respectively.

View Article and Find Full Text PDF

We investigated the interface between hexagonal ZnO films and cubic MgO (001) substrates, fabricated via molecular beam epitaxy. X-ray diffraction and (scanning) transmission electron microscopy revealed that growth follows the single [0001] direction when the temperature of the substrate is above 200 °C, while when the substrate temperature is below 150 °C, growth initially is along [0001] and then mainly changes to [0-332] variants beyond a thickness of ∼10 nm. Interestingly, a double-domain feature with a rotational angle of 30° appears during growth along [0001] regardless of the temperature, experimentally demonstrating the theoretical predictions for the occurrence of double rotational domains in such a heteroepitaxy [Grundmann et al.

View Article and Find Full Text PDF

The solubility of sodium and its effects on phonon scattering in lead chalcogenide PbQ (Q = Te, Se, S) family of thermoelectric materials was investigated by means of transmission electron microscopy and density functional calculations. Among these three systems, Na has the highest solubility limit (~2 mol %) in PbS and the lowest ~0.5 mol %) in PbTe.

View Article and Find Full Text PDF

We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states.

View Article and Find Full Text PDF

The morphology of crystalline precipitates in a solid-state matrix is governed by complex but tractable energetic considerations driven largely by volume strain energy minimization and anisotropy of interfacial energies. Spherical precipitate morphologies are favored by isotropic systems, while anisotropic interfacial energies give energetic preference to certain crystallographically oriented interfaces, resulting in a faceted precipitate morphology. In conventional solid-solution precipitation, a precipitate's morphological evolution is mediated by surface anchoring of capping molecules, which dramatically alter the surface energy in an anisotropic manner, thereby providing exquisite morphology control during crystal growth.

View Article and Find Full Text PDF

Polar and nonpolar ZnO thin films were deposited on MgO (001) substrates under different deposition parameters using oxygen plasma-assisted molecular beam epitaxy (MBE). The orientations of ZnO thin films were investigated by in situ reflection high-energy electron diffraction and ex situ X-ray diffraction (XRD). The film roughness measured by atomic force microscopy evolved as a function of substrate temperature and was correlated with the grain sizes determined by XRD.

View Article and Find Full Text PDF

A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube.

View Article and Find Full Text PDF