Publications by authors named "Hui-Qian Wu"

Reactive oxygen and nitrogen species (ROS/RNS) in macrophages have a potent killing effect on pathogens that infect the host. Here, we achieved , quantitative detection of the homeostasis of four primary ROS/RNS (ONOO, HO, NO, and NO) and their precursors (O˙, NO) in phagolysosomes of single RAW 264.7 macrophages after phagocytosis of with platinum-black nanoelectrodes.

View Article and Find Full Text PDF

Airborne nanoplastics can enter alveolar cells and trigger intracellular oxidative stress primarily. Herein, taking advantage of the high electrochemical resolution of SiC@Pt nanoelectrodes, we achieved the quantitative discrimination of the major ROS/RNS within A549 cells, disclosed the sources of their precursors, and observed that the NO (RNS precursor) level significantly increased, whereas O˙ (ROS precursor) remained relatively stable during the nanoplastics exposure. This establishes that iNOS or mitochondrion-targeted treatment may be a preventive or therapeutic strategy for nanoplastic-induced lung injury.

View Article and Find Full Text PDF

Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages.

View Article and Find Full Text PDF

The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells.

View Article and Find Full Text PDF