Zhonghua Nan Ke Xue
February 2023
Objective: To investigate whether mouse epididymis-specific mRNAs Adam7 and Crisp1 can be delivered into N2a and TM4 cells, and to provide an experimental basis for exploring the function of epididymal mRNAs.
Methods: Using RT-PCR, we detected the presence of epididymis-specific genes (Adam7, Crisp1, Defb22, Wfdc2, and Wfdc9) in the testis, epididymis, epididymosome and sperm of adult male BALB/c mice as well as in the human testis, seminal vesicles and sperm. We isolated epididymosomes of BALB/c mice by low-speed centrifugation, filtration and ultracentrifugation, fluorescently labeled them by PKH26, co-incubated them for 1 hour with the N2a and TM4 cells after 24 hours of starvation culture, and observed whether they were fused with the N2a and TM4 cells and ingested using the epididymosomes without PKH26 labeling, PKH26 dye without epididymosomes, and non- epididymosome or -PKH26 dye as controls.
This study aimed to identify genetic causes responsible for multiple morphological abnormalities of the sperm flagella (MMAF) in the Han Chinese population. Three primary infertile males with completely immobile sperm and MMAF were enrolled. Whole-exome sequencing and Sanger sequencing were performed to identify disease-causing genes.
View Article and Find Full Text PDFGlutamate excitotoxicity is thought to play an important role in Huntington's disease (HD), which is caused by a polyglutamine expansion in the HD protein huntingtin (htt). Overactivation of group I metabotropic glutamate receptors (mGluRs), which include mGluR1 as well as mGluR5 and are coupled via phospholipase C to the inositol phosphate pathway, is found to be involved in mutant htt-mediated neurotoxicity. However, activation of mGluR5 also leads to neuronal protection.
View Article and Find Full Text PDF