Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents.
View Article and Find Full Text PDF(Waterston) is a predominant parasitoid of the Asian citrus psyllid (ACP), a destructive citrus pest and vector of huanglongbing (HLB) disease in the fields of southern China. To explore the functioning of target genes in , the screening of specific reference genes is critical for carrying out the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) under different experimental conditions. However, no reference gene(s) for has yet been reported.
View Article and Find Full Text PDFInvasive genotypes may be associated with their ability to access the invasion habitat. The whitefly, Bemisia tabaci Q, has been an important agricultural pest in China since 2008. In order to identify the invasion routes and to provide insight into its invasion success in China, we analyzed the composition, distribution, and genetic diversity of mitochondrial haplotypes of B.
View Article and Find Full Text PDFThough the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was introduced into China more than 60 years ago, the genetic diversity and structure of this exotic insect pest and virus vector have not been studied. To investigate the population genetic characteristics of this invasive species and to identify potential invasion routes, the genetic diversity and population structure of 17 collections of T. vaporariorum from nine provinces in China were analyzed using seven microsatellite loci.
View Article and Find Full Text PDFBackground: Even though introductions of exotic species provide ready-made experiments of rapid evolution, few studies have examined the genetic structure of an exotic species shortly after its initial introduction and subsequent spread. To determine the genetic structure of its populations during the initial introduction, we investigated the invasive sweet potato whitefly (Bemisia tabaci Q, commonly known as B. tabaci biotype Q) in China, which was introduced in approximately 2003.
View Article and Find Full Text PDFThe sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs.
View Article and Find Full Text PDFBackground: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci.
View Article and Find Full Text PDF