Publications by authors named "Hui-Min Tseng"

One of the principal signaling pathway outcomes from brain-derived neurotrophic factor (BDNF) is the activation of antiapoptotic pathways. In addition to the role of extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3 kinase, BDNF activates protein kinase CK2 to mediate its neuroprotective effect. The inhibition of CK2 activity has been shown to induce apoptosis.

View Article and Find Full Text PDF

Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity.

View Article and Find Full Text PDF

Nonhomologous end joining (NHEJ) eliminates DNA double-strand breaks (DSBs) in bacteria and eukaryotes. In Saccharomyces cerevisiae, there are pairwise physical interactions among the core complexes of the NHEJ pathway, namely Yku70-Yku80 (Ku), Dnl4-Lif1 and Mre11-Rad50-Xrs2 (MRX). However, MRX also has a key role in the repair of DSBs by homologous recombination (HR).

View Article and Find Full Text PDF

Cell cycle progression is regulated by cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. In the frog, Xenopus laevis, the CDK inhibitor p27(Xic1) (Xic1) inhibits DNA synthesis by negatively regulating CDK2-cyclin E. Using the frog egg extract as a model system for the study of Xic1, studies have demonstrated that Xic1 protein levels are regulated by nuclear ubiquitination and proteolysis.

View Article and Find Full Text PDF

In mammalian cells, repair of DNA double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ) is critical for genome stability. Although the end-bridging and ligation steps of NHEJ have been reconstituted in vitro, little is known about the end-processing reactions that occur before ligation. Recently, functionally homologous end-bridging and ligation activities have been identified in prokarya.

View Article and Find Full Text PDF

The repair of DNA double-strand breaks is critical for maintaining genetic stability. In the non-homologous end-joining pathway, DNA ends are brought together by end-bridging factors. However, most in vivo DNA double-strand breaks have terminal structures that cannot be directly ligated.

View Article and Find Full Text PDF

Genetic studies have implicated the Saccharomyces cerevisiae POL4 gene product in the repair of DNA double-strand breaks by nonhomologous end joining. Here we show that Pol4 preferentially catalyzes DNA synthesis on small gaps formed by the alignment of linear duplex DNA molecules with complementary ends, a DNA substrate specificity that is compatible with its predicted role in the repair of DNA double-strand breaks. Pol4 also interacts directly with the Dnl4 subunit of the Dnl4-Lif1 complex via its N-terminal BRCT domain.

View Article and Find Full Text PDF