Publications by authors named "Hui-Min Chung"

Article Synopsis
  • Over two decades, initiatives have aimed to enhance STEM undergraduate outcomes, with the inclusive Research Education Community (iREC) emerging as a scalable reform model that supports STEM faculty in implementing course-based research to improve student learning.
  • This study utilized pathway modeling to describe the HHMI Science Education Alliance (SEA) iREC, identifying how faculty engagement leads to sustainable adoption and improvement of new teaching strategies through feedback from over 100 participating faculty members.
  • The findings indicate that iREC fosters a collaborative environment where STEM faculty can share expertise and data, thereby enhancing their teaching practices and contributing to the overall evolution of undergraduate science education.
View Article and Find Full Text PDF

Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment - 1) Assessing Laboratory Work and Scientific Thinking; 2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; 3) Appraising Forms of Scientific Communication; and 4) Metacognition of Learning - along with a set of practices for each aim.

View Article and Find Full Text PDF

Bacteriophage TaidaOne was isolated from soil collected in Taipei, Taiwan, using the host Streptomyces griseus. It is a siphovirus with a 56,183-bp genome that contains 86 protein-coding genes. Based on gene content similarity, it was assigned to actinobacteriophage subcluster BI1, within which only TaidaOne and GirlPower genomes contain an acetyltransferase homolog gene.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the implementation and educational benefits of course-based research experiences (CRE) in STEM education over three years, involving 102 instructors from the SEA-PHAGES program.
  • - The research includes surveys and feedback sessions to understand instructors' perspectives on the goals and teaching practices of CRE, ultimately utilizing qualitative content analysis.
  • - Findings reveal three instructional models for CRE teaching: 1) acting as a scientist and generating data, 2) teaching procedural knowledge, and 3) promoting project ownership, which help inform new instructors and institutions about effective CRE instruction.
View Article and Find Full Text PDF
Article Synopsis
  • The study details the genome sequences of 14 mycobacteriophages identified using the mc²155 host.
  • Four of these phages are similar to subcluster K1, while the remaining 10 belong to subcluster K6.
  • The phage genomes show significant diversity, featuring various integrases and different integration sites.
View Article and Find Full Text PDF

We report here the complete genome sequences of four subcluster L3 mycobacteriophages newly isolated from soil samples, using mc155 as the host. Comparative genomic analyses with four previously described subcluster L3 phages reveal strong nucleotide similarity and gene conservation, with several large insertions/deletions near their right genome ends.

View Article and Find Full Text PDF

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D.

View Article and Find Full Text PDF

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses.

View Article and Find Full Text PDF

There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs.

View Article and Find Full Text PDF

As we move closer to ubiquitous electronic health records (EHRs), genetic, familial, and clinical information will need to be incorporated into EHRs as structured data that can be used for data mining and clinical decision support. While the Human Genome Project has produced new and exciting genomic data, the cost to sequence the human personal genome is high, and significant controversies regarding how to interpret genomic data exist. Many experts feel that the family history is a surrogate marker for genetic information and should be part of any paper-based or electronic health record.

View Article and Find Full Text PDF

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities.

View Article and Find Full Text PDF

Temporal and spatial regulation of cell division is critical for proper development of multicellular organisms. An important aspect of this regulation is cell-cycle arrest, which in many cell types is coupled with differentiated status. Here we report that the polar cells--a group of follicle cells differentiated early during Drosophila oogenesis--are arrested at G2 phase and can serve as a model cell type for investigation of developmental regulation of cell-cycle arrest.

View Article and Find Full Text PDF

Aph-1 is a multipass transmembrane protein and an essential component of the Presenilin (Psn)-mediated gamma-secretase complex. During protease assembly, Aph-1 stabilizes the newly synthesized Psn holoprotein to facilitate generation of the active form of Psn, which is a Psn-NTF/Psn-CTF heterodimer produced through a Presenilinase-initiated endoproteolytic cleavage of the Psn holoprotein. Although it is clear that loss of Aph-1 activity leads to failure of Psn heterodimer formation, little is understood about whether Aph-1 plays a role in regulating gamma-secretase activity in addition to assisting Psn maturation.

View Article and Find Full Text PDF

Presenilin (Psn) is a multipass transmembrane protein that functions as the catalytic subunit of gamma-secretase for mediating intramembrane cleavage of type 1 transmembrane proteins. Normally active Psn is in the form of a heterodimer composed by its N-terminal and C-terminal fragments that are generated from a Presenilinase-mediated endoproteolytic cleavage within its large cytosolic loop during assembly of the protease complex. Using the Psn forms that either bypass or disable Presenilinase-mediated endoproteolysis, and a Psn form that has most of the large cytosolic loop deleted, we have established an in vivo system to enable investigations of Psn functional domains in Drosophila.

View Article and Find Full Text PDF
Article Synopsis
  • In eukaryotes, RNA polymerase I typically transcribes rRNA, while RNA polymerase II synthesizes mRNA; however, Trypanosoma brucei exhibits a unique case where RNA pol I is involved in transcribing genes for variant surface glycoproteins (VSG) and procyclins.
  • Researchers created a T. brucei cell line with tagged RNA pol I to study its role, confirming that depleting RNA pol I disrupted transcription of specific genes linked to VSG and procyclin, but not others like SL RNA.
  • The findings suggest that T. brucei utilizes a multifunctional RNA pol I for transcribing rDNA, VSG, and procyclin genes, challenging the
View Article and Find Full Text PDF