Background: Gut microbiota has been identified as an imbalance in patients with irritable bowel syndrome (IBS). Fecal microbiota transplantation (FMT) is a novel method to restore microbiota and treat IBS patients.
Objective: To conduct a meta-analysis and estimate the efficacy and safety of FMT for the treatment of IBS patients with subgroup analyses to explore the most effective way of FMT for IBS.
Object: Fusobacterium nucleatum (F.nucleatum), a gram-negative, obligately anaerobe of oral commensal,has been regarded as culprit of periodontal diseases previously and is being unveiled as possible pathogen of gastrointestinal disorders. The key virulence factor of F.
View Article and Find Full Text PDFTherapies for Tourette syndrome (TS) are insufficient, and novel therapies are needed. Fecal microbiota transplantation (FMT) has been a potential therapy for several neurological diseases. Here, we report a preliminary study to investigate the effects of FMT on patients with TS.
View Article and Find Full Text PDFThe formation and accumulation of hydrates in high pressure oil and gas pipelines bring great risks to field development and deep-water transportation. In this paper, a high pressure flow loop equipped with visual window was used to study the growth process of hydrates in a pipe flow system and slurry flow characteristics. Deionized water, industrial white oil and CO were selected as the experiment medium.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
February 2019
Proton pump inhibitors (PPIs) are commonly used to lessen symptoms in patients with gastroesophageal reflux disease (GERD). However, the effects of PPI therapy on the gastrointestinal microbiota in GERD patients remain unclear. We examined the association between the PPI usage and the microbiota present in gastric mucosal and fecal samples from GERD patients and healthy controls (HCs) using 16S rRNA gene sequencing.
View Article and Find Full Text PDFA synthesis-inspired chemical investigation of the leaves of Melicope ptelefolia led to the isolation of evodialones A-D (1-4), four rearranged acetophenone stereoisomers possessing a prenylated acylcyclopentenone skeleton with three stereogenic carbons. Evodialones C and D (3 and 4) are new minor constituents. The chiral-phase HPLC resolution gave (+)-1-4 and (-)-1-4, eight enantiomers forming a complete stereoisomer library.
View Article and Find Full Text PDFMetabolomics can be used to identify potential markers and discover new targets for future therapeutic interventions. Here, we developed a novel application of the metabonomics method based on gas chromatography-mass spectrometry (GC/MS) analysis and principal component analysis (PCA) for rapidly exploring the anticancer mechanism of physapubenolide (PB), a cytotoxic withanolide isolated from Physalis species. PB inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo, accompanied by apoptosis-related biochemical events, including the cleavage of caspase-3/7/9 and PARP.
View Article and Find Full Text PDFSeven neo-clerodane diterpenes, teufruintins A-G (1-7), together with eight known compounds (8-15) were isolated from the CHCl3-soluble fraction of the aerial parts of Teucrium fruticans cultivated in China. The chemical structures of the isolated compounds were elucidated using different spectroscopic methods. All of the isolated diterpenes were evaluated for their cytotoxic activities on three human cancer cell lines, and for their ability to inhibit LPS-induced nitric oxide production in RAW 264.
View Article and Find Full Text PDFBackground: Accumulating evidence links colorectal cancer (CRC) with the intestinal microbiota. However, the disturbance of intestinal microbiota and the role of Fusobacterium nucleatum during the colorectal adenoma-carcinoma sequence have not yet been evaluated.
Methods: 454 FLX pyrosequencing was used to evaluate the disturbance of intestinal microbiota during the adenoma-carcinoma sequence pathway of CRC.
Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations.
View Article and Find Full Text PDFMelicolones A (1) and B (2), a pair of rearranged prenylated acetophenone epimers with an unusual 9-oxatricyclo[3.2.1.
View Article and Find Full Text PDFRecent studies have increasingly linked microRNAs to colorectal cancer (CRC). MiR-194 has been reported deregulated in different tumor types, whereas the function of miR-194 in CRC largely remains unexplored. Here we investigated the biological effects, mechanisms and clinical significance of miR-194.
View Article and Find Full Text PDFThe transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is a single-pass transmembrane protein, and it is downregulated in human gastric cancer and levels correlate with tumor progression and time of survival. However, the mechanism of its dysregulation in gastric cancer is little known. Here we investigate its regulatory mechanism and the bidirectional regulation between TMEFF2 and STAT3 in gastric carcinogenesis.
View Article and Find Full Text PDFLayered Double Hydroxides (LDHs)-based drug delivery systems have, for many years, shown great promises for the delivery of chemical therapeutics and bioactive molecules to mammalian cells in vitro and in vivo. This system offers high efficiency and drug loading density, as well as excellent protection of loaded molecules from undesired degradation. Toxicological studies have also found LDHs to be biocompatible compared with other widely used nanoparticles, such as iron oxide, silica, and single-walled carbon nanotubes.
View Article and Find Full Text PDFThe process of using solar energy to split water to produce hydrogen assisted by an inorganic semiconductor is crucial for solving our energy crisis and environmental problems in the future. However, most semiconductor photocatalysts would not exhibit excellent photocatalytic activity without loading suitable co-catalysts. Generally, the noble metals have been widely applied as co-catalysts, but always agglomerate during the loading process or photocatalytic reaction.
View Article and Find Full Text PDFThe efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst.
View Article and Find Full Text PDFSolar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis.
View Article and Find Full Text PDFDye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously.
View Article and Find Full Text PDFPlatinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable.
View Article and Find Full Text PDFDye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications.
View Article and Find Full Text PDFPhotocatalytic water splitting using semiconductor photocatalysts has been considered as a "green" process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO(2) electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel-generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction.
View Article and Find Full Text PDFBackground: There is no data that demonstrates what anaesthesia is suitable for patients who have a high risk of fat embolism syndrome (FES). We investigated the mortality rates of rats that received a half lethal dose (LD(50)) of fat by intravenous injection after induction of general or spinal anaesthesia.
Methods: An LD(50) of fat for rats was determined by using a toxicological method.
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers.
View Article and Find Full Text PDFAim of the study is to determine the clinical outcome of 158 cases of childhood acute lymphoblastic leukemia (ALL) treated with a risk-directed protocol in Shanghai, China. One hundred fifty eight consecutive newly diagnosed patients were enrolled in the ALL-XH-99 protocol. The Kaplan - Meier method was used to estimate survival rates and comparisons were made by using the 2-sided log-rank test.
View Article and Find Full Text PDF