Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients.
View Article and Find Full Text PDFFabry disease is an inborn error of glycosphingolipid metabolism caused by deficiency of alpha-galactosidase A (alpha-Gal A) activity. It has been shown that protein misfolding is primarily responsible for the enzyme deficiency in a large proportion of mutations identified in Fabry patients with residual enzyme activity, and 1-deoxygalactonojirimycin (DGJ) can effectively increase the residual enzyme activity in cultured patient's cells. Herein, we demonstrate the preclinical efficacy and safety of DGJ in transgenic mice that express human mutant alpha-Gal A activity.
View Article and Find Full Text PDFFabry disease is a lysosomal storage disorder caused by the deficiency of alpha-Gal A (alpha-galactosidase A) activity. In order to understand the molecular mechanism underlying alpha-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal K(m) and V(max) values.
View Article and Find Full Text PDFGaucher disease is an autosomal recessive lysosomal storage disorder caused by the deficient activity of glucocerebrosidase. Accumulation of glucosylceramide, primarily in the lysosomes of cells of the reticuloendothelial system, leads to hepatosplenomegaly, anemia and skeletal lesions in type I disease, and neurologic manifestations in types II and III disease. We report herein the identification of hydrophilic active-site-specific chaperones that are capable of increasing glucocerebrosidase activity in the cultured fibroblasts of Gaucher patients.
View Article and Find Full Text PDFThe lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A.
View Article and Find Full Text PDF