Publications by authors named "Hui-Hua Lan"

Although the molecular studies of single gastrointestinal tumors have been widely reported by media, it is not clear about the function of small nucleolar RNA (snoRNA) in the progression, development and prognostic significance in colon adenocarcinoma, and its certain molecular mechanisms and functions remain to be studied. This study aims to dig out the gene expression data profile of colon adenocarcinoma and construct the prognostic molecular pathology prediction-evaluation, ultimately revealing the clinical prognostic value of snoRNA in colon adenocarcinoma. 932 differentially expressed snoRNAs of the colon adenocarcinoma were obtained by edgeR R package.

View Article and Find Full Text PDF

Objective: miRNA has gained attention as a therapeutic target in various malignancies. The proposal of this study was to investigate the biological functions of key miRNAs and target genes in cancers of the digestive tract which include esophageal carcinoma (ESCA), gastric adenocarcinoma (GAC), colon adenocarcinoma (COAD), and rectal adenocarcinoma (READ).

Materials And Methods: After screening differentially expressed miRNAs (DEMIs) and differentially expressed mRNAs (DEMs) in four digestive cancers from The Cancer Genome Atlas (TCGA) database, the diagnostic value of above DEMIs was evaluated by receiver-operating characteristic (ROC) curve analysis.

View Article and Find Full Text PDF

Background: The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms.

View Article and Find Full Text PDF

Background: MicroRNA is endogenous non-coding small RNA that negative regulate and control gene expression, and increasing evidence links microRNA to oncogenesis and the pathogenesis of cancer. The goal of this study was to explore the potential molecular mechanism of miR-375 in various cancers.

Methods: MiR-375 overexpression in different tumor cell lines was probed with microarray data from Gene Expression Omnibus (GEO).

View Article and Find Full Text PDF