Publications by authors named "Hui-Hsu Gavin Tsai"

Accurately predicting the power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) represents a crucial challenge, one that is pivotal for the high throughput rational design and screening of promising dye sensitizers. This study presents precise, predictive, and interpretable machine learning (ML) models specifically designed for Zn-porphyrin-sensitized solar cells. The model leverages theoretically computable, effective, and reusable molecular descriptors (MDs) to address this challenge.

View Article and Find Full Text PDF

Herein, we explored the oxidative coupling reactions of carbazole-based polycyclic aromatic hydrocarbons using traditional Scholl reactions and electrochemical oxidation. Our findings indicate that the oxidation predominantly occurs at the carbazole functional group. The underlying reaction mechanisms were also clarified through theoretical investigations, highlighting that the primary oxidation pathway involves the 3,6-positions of the carbazole moiety, which is attributable to its high electron density.

View Article and Find Full Text PDF

Three new heteroleptic Ru complexes, , , and , were prepared as sensitizers for coadsorbent-free, panchromatic, and efficient dye-sensitized solar cells. They are simultaneously functionalized with highly conjugated anchoring and ancillary ligands to explore the electronic and steric effects on their photovoltaic characteristics. The coadsorbent-free device based on achieved the best power conversion efficiency (PCE) of 8.

View Article and Find Full Text PDF

The escalating menace of multidrug-resistant (MDR) pathogens necessitates a paradigm shift from conventional antibiotics to innovative alternatives. Antimicrobial peptides (AMPs) emerge as a compelling contender in this arena. Employing methodologies, we can usher in a new era of AMP discovery, streamlining the identification process from vast candidate sequences, thereby optimizing laboratory screening expenditures.

View Article and Find Full Text PDF

Dye sensitizers with wideband absorption covering the near-IR region have long been of interest because they potentially harvest a wide range of solar energies essential to promote photocurrent power conversion efficiencies. In this study, we used time-dependent density functional theory with spin-orbit (SO) interactions to theoretically explore the long-wavelength absorptions and spin-forbidden triplet transitions activated by SO interactions for terpyridyl ruthenium/osmium complex dyes. These dyes feature a Ru(II) sensitizer coordinated with a phosphine ligand and are exemplified by DX1, denoted as [-dichloro-(phenyldimethoxyphosphine)(2,2';6',2″-terpyridyl-4,4',4″-tricarboxylic)Ru].

View Article and Find Full Text PDF

(KARI) catalyzes the conversion of ()-2-acetolactate or ()-2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-alkylbutyrate, the second step in the biosynthesis of branched chain amino acids (BCAAs). Because the BCAA biosynthetic pathway is present in bacteria, plants, and fungi, but absent in animals, it is an excellent target for the development of new-generation antibiotics and herbicides. Nevertheless, the mechanism of the KARI-catalyzed reaction has not yet been fully solved.

View Article and Find Full Text PDF

The syntheses of metal-organic frameworks (MOFs) can be improved through modulated synthesis, synthesis employing precursors, and postsynthetic exchange (PSE) modifications, all of which share ligand exchange as a common and crucial reaction. To date, however, the mechanism of ligand exchange and the underlying principles governing it have remained elusive. Herein, we report energy landscapes for the ligand exchange processes of 1,4-benzenedicarboxylic acid and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid with ZrO(OH)(OMc) (OMc = methacrylate), as calculated using density functional theory (DFT).

View Article and Find Full Text PDF

Bond homolysis (BHo) is a fundamental concept in chemical-bonding phenomena. To date, research studies on the BHo concept have provided crucial information for understanding the nature of chemical bonding and reactions. Two potential-energy minima, a σ-bonding isomer and a singlet-diradical isomer, have been known to exist in carbon-carbon BHo.

View Article and Find Full Text PDF

D-A-π-A dyes differ from the traditional D-π-A framework having several merits in dye-sensitized solar cell (DSSC) applications. With regard to D-π-A dyes, D-A-π-A dyes red-shift absorption spectra and show particular photostability. Nevertheless, the effects of internal acceptor on the charge transfer (CT) probability are unclear.

View Article and Find Full Text PDF

Long-range olefin isomerization of 2-alkenylbenzoic acid derivatives going through two to five sp-carbon atoms to give ()-alkenes was achieved with palladium(0) nanoparticles. The substrate scope of this reaction includes carboxylic acid, ester, and primary to tertiary amides and tolerates various substituents on the benzene ring. This isomerization reaction was catalyzed by recyclable Pd(0) nanoparticles, prepared in situ from PdCl and characterized by X-ray powder diffraction and scanning electron microscopy analyses.

View Article and Find Full Text PDF

The Sso7c4 from Sulfolobus solfataricus forms a dimer, which is believed to function as a chromosomal protein involved in genomic DNA compaction and gene regulation. Here, we present the crystal structure of wild-type Sso7c4 at a high resolution of 1.63 Å, showing that the two basic C-termini are disordered.

View Article and Find Full Text PDF

The loading of sensitizers on a semiconductor is crucial for determining the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The interfacial properties of dyes adsorbed on a TiO film, such as adsorption configurations and adsorption energy, can influence the total amount of dye sensitizers that loads and the stability of a DSSC device. Therefore, it is important to characterize the adsorption properties of sensitizers on TiO films atomically and electronically to ensure rational structure-based dye design for high-performance DSSCs.

View Article and Find Full Text PDF

The trans isomers of fatty acids are found in human adipose tissue. These isomers have been linked with deleterious health effects (e.g.

View Article and Find Full Text PDF

Extracellular deposits of amyloid β (Aβ) aggregates in the brain is the hallmark of Alzheimer's disease. We present the configurations (location and conformation) and the interfacial folding and membrane insertion mechanisms of Aβ fragments, wild-type Aβ(25-35), Aβ(35-25), and a sequence-shuffled peptide [Aβ(25-35)-shuffled] from Aβ(25-35) within membranes by replica-exchange molecular dynamics simulations. Although these peptides have the same amino acid composition, simulations show they have distinct locations and conformations within membranes.

View Article and Find Full Text PDF

Membrane fusion is essential for intracellular trafficking and virus infection, but the molecular mechanisms underlying the fusion process remain poorly understood. In this study, we employed all-atom molecular dynamics simulations to investigate the membrane fusion mechanism using vesicle models which were pre-bound by inter-vesicle Ca(2+)-lipid clusters to approximate Ca(2+)-catalyzed fusion. Our results show that the formation of the hemifusion diaphragm for vesicle fusion is a multi-step event.

View Article and Find Full Text PDF

Although membrane fusion plays key roles in intracellular trafficking, neurotransmitter release, and viral infection, its underlying molecular mechanism and its energy landscape are not well understood. In this study, we employed all-atom molecular dynamics simulations to investigate the fusion mechanism, catalyzed by Ca(2+) ions, of two highly hydrated 1-palmitoyl-2-oleoyl-sn-3-phosphoethanolamine (POPE) micelles. This simulation system mimics the small contact zone between two large vesicles at which the fusion is initiated.

View Article and Find Full Text PDF

We describe the synthesis of the decalin core of codinaeopsin (1), a tryptophan-polyketide hybrid natural product with promising antimalarial activity (IC50 4.7 μM, against Plasmodium falciparum), via an intramolecular Diels-Alder (IMDA) reaction. A convergent synthesis was developed to prepare the precursors for the IMDA reaction in 10 steps.

View Article and Find Full Text PDF

Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility.

View Article and Find Full Text PDF

In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K(+), Mg(2+), and Ca(2+) ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca(2+) ions with lipids is significantly stronger than that of K(+) and Mg(2+) ions, regardless of the composition of the lipid bilayer. The binding of Ca(2+) ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K(+)- and Mg(2+)-containing systems.

View Article and Find Full Text PDF

Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements.

View Article and Find Full Text PDF

The mechanisms of interfacial folding and membrane insertion of the Alzheimer's amyloid-beta fragment Abeta(25-35) and its less toxic mutant, N27A-Abeta(25-35) and more toxic mutant, M35A-Abeta(25-35), are investigated using replica-exchange molecular dynamics in an implicit water-membrane environment. This study simulates the processes of interfacial folding and membrane insertion in a spontaneous fashion to identify their general mechanisms. Abeta(25-35) and N27A-Abeta(25-35) peptides share similar mechanisms: the peptides are first located in the membrane hydrophilic region where their C-terminal residues form helical structures.

View Article and Find Full Text PDF

In this study, we used TD-PBE0 calculations to investigate the first singlet excited state (S(1)) behavior of 2-(2'-hydroxyphenyl)benzimidazole (HBI) and its amino derivatives. We employed the potential energy surfaces (PESs) at the S(1) state covering the normal syn, tautomeric (S(1)-T(syn)), and intramolecular charge-transfer (S(1)-T(ICT)) states in ethanol and cyclohexane to investigate the reaction mechanisms, including excited-state intramolecular proton transfer (ESIPT) and intramolecular charge-transfer (ICT) processes. Two new S(1)-T(ICT) states, stable in ethanol and cyclohexane, were found for HBI and its amino derivatives; they are twisted and pyramidalized.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications.

View Article and Find Full Text PDF

A facile one-pot synthesis route for preparation of a well-ordered cubic mesoporous silica SBA-1 functionalized with -COOH functional groups is reported for the first time. The results of 29Si{1H} HETCOR NMR provide direct evidence for the interactions between the carboxylic acid and silanol groups in carboxylic acid functionalized SBA-1. Density functional theory calculations indicate that the T3-Q4-Q3 motif is the favorable framework composition in the material and the carboxylic protons in the T3 species can form hydrogen bonds with the spatially proximate oxygen atom in the Q3 Si-OH species.

View Article and Find Full Text PDF

Under the conditions of palladium-catalyzed formate reduction, the isomers isoindoline and indoline undergo distinct hydrogenation and dehydrogenation processes to form 4,5,6,7-tetrahydroisoindole and indole, respectively. In terms of resonance energy, the reduction of isoindoline is accompanied by a loss of aromaticity, whereas the dehydrogenation of indoline occurs with a gain in aromaticity. To rationalize why isoindoline and indoline, under the same conditions of palladium catalysis, form different products, we used density functional theory calculations to investigate the mechanisms of the two reaction pathways.

View Article and Find Full Text PDF