Tyrosinase is an essential copper-containing enzyme required for melanin synthesis. The overproduction and abnormal accumulation of melanin cause hyperpigmentation and neurodegenerative diseases. Thus, tyrosinase is promising for use in medicine and cosmetics.
View Article and Find Full Text PDFTyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 ± 6 nM), outperforms than kojic acid.
View Article and Find Full Text PDFTyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects.
View Article and Find Full Text PDFTyrosinase, which is the crucial copper-containing enzyme involved in melanin synthesis, is strongly associated with hyperpigmentation disorders, cancer, and neurodegenerative disease; thus, it has attracted considerable interest in the fields of medicine and cosmetics. The known tyrosinase inhibitors show numerous adverse side effects, and there is a lack of safety regulations governing their use. As a result, there is a need to develop novel inhibitors with no toxicity and long-term stability.
View Article and Find Full Text PDFThis study proposes a diffractive autostereoscopic display technology that utilizes blazed grating embedded in the liquid crystal panel to deliver a stereo image pair to both eyes. Having the diffractive red green blue beams as the color source of the panel, color filters are no longer required in this system. From the simulation analyses, not only could the brightness achieve 77.
View Article and Find Full Text PDFSensitivity to disk vibration and large component number, which complicates assembly and optical alignment, are the drawbacks of traditional optical pickup systems. Here, a numerical method of designing a dual-wavelength diffractive objective lens with high numerical aperture for generating arbitrarily discrete, diffractionless beams with extended depth of focus is presented. Simulation and experimental results show that the optimized design provides better resolution, longer depth of focus and higher diffractive efficiency.
View Article and Find Full Text PDFA color-separation system that angularly positions color LEDs to produce color separation and a lens array to focus this light onto the pixels is proposed. The LED rays from different incident angles are mapped into corresponding sub-pixel positions to efficiently display color image, which can be used to replace the absorbing color filter in the conventional liquid crystal layer. In this paper, the prototype backlight has been designed, fabricated and characterized.
View Article and Find Full Text PDFA diffractive grating is promising for color separation to effectively replace conventional absorptive dye color filter in liquid crystal displays. In this paper, we demonstrated a color separation module consisting of an aspheric-lenticular lens array and a blazed grating to substitute for the dye color filter. Each component was designed to match the recent fabrication ability of our roll-to-roll imprinting.
View Article and Find Full Text PDF