The preparation of bioactive materials with biomolecules as templates to control the nucleation and growth of nano-hydroxyapatite (n-HA) crystals is a vital research field in bone tissue engineering. However, meeting the performance requirements of possessing appropriate surface roughness, high porosity, structural stability, adequate mechanical strength, biodegradability and biocompatibility at the same time is the core issue that restricts the development of these biomimetic materials in biosciences as well as medical clinical translation. In this work, a mineralized self-assembled silk fibroin (SF)/cellulose interpenetrating network composite aerogel (M-S-C) material was prepared by freeze-drying using sol-gel and in situ mineralization strategy.
View Article and Find Full Text PDFComposites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need.
View Article and Find Full Text PDF