Publications by authors named "Hui Sun Lee"

Accurate modeling of ligand-binding-site structures plays a critical role in structure-based virtual screening. However, the structures of the ligand-binding site in most predicted protein models are generally of low quality and need refinements. In this work, we present a ligand-binding-site structure refinement protocol using molecular dynamics simulation with restraints derived from predicted binding site templates.

View Article and Find Full Text PDF

Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present Structure template-based ab initio ligand design solution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site.

View Article and Find Full Text PDF

Characterizing glycans and glycoconjugates in the context of three-dimensional structures is important in understanding their biological roles and developing efficient therapeutic agents. Computational modeling and molecular simulation have become an essential tool complementary to experimental methods. Here, we present a computational tool, Glycan Modeler for in silico N-/O-glycosylation of the target protein and generation of carbohydrate-only systems.

View Article and Find Full Text PDF

Lipases are useful as catalysts, particularly for the kinetic resolution of racemic alcohols and esters. However, their industrial applications are limited by their poor activities in organic media. We recently found that a lipoprotein lipase from Burkholderia species displays dramatically enhanced activity in organic solvent if the protein is coated with glucose-headed surfactant (GHS).

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) of the cholinergic system have been linked to antinociception, and therefore could be an alternative target for pain alleviation. nAChR activity has been shown to be regulated by the nicotinic modulator, lynx1, which forms stable complexes with nAChRs and has a negative allosteric action on their function. The objective in this study was to investigate the contribution of lynx1 to nicotine-mediated antinociception.

View Article and Find Full Text PDF

Immunoglobulin G1 (IgG1), a subclass of human serum antibodies, is the most widely used scaffold for developing monoclonal antibodies to treat human diseases. The composition of asparagine(N)297-linked glycans can modulate the binding affinity of IgG1 Fc to Fc γ receptors, but it is unclear how the structural modifications of N-glycan termini, which are distal from the binding interface, contribute to the affinity. Through atomistic molecular dynamics simulations of a series of sequentially truncated high-mannose IgG1 Fc glycoforms, we found that the C'E loop and the Cγ2-Cγ3 orientation are highly dynamic, and changes in N-glycan composition alter their conformational ensembles.

View Article and Find Full Text PDF

Motivation: Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse.

View Article and Find Full Text PDF

N-linked glycosylation is an enzymatic reaction in which an oligosaccharide is transferred en bloc onto an asparagine residue of an acceptor polypeptide, catalyzed by oligosaccharyltransferase (OST). Despite the available crystal structures, the role of the external loop EL5, which is critical for the catalytic cycle, is enigmatic as EL5 in the crystal structures is partially absent or blocks a pathway of lipid-linked oligosaccharide to the active site. Here we report the molecular origin of EL5 conformational changes through a series of molecular dynamics simulations of a bacterial OST, Campylobacter lari PglB.

View Article and Find Full Text PDF

Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification.

View Article and Find Full Text PDF

Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap.

View Article and Find Full Text PDF

Plant glutamate receptor homologs (GLRs) have long been proposed to function as ligand-gated Ca channels, but no in planta evidence has been provided. Here, we present genetic evidence that Arabidopsis GLR3.1 and GLR3.

View Article and Find Full Text PDF

CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations.

View Article and Find Full Text PDF

Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play fundamental roles in physiological processes by modulating diverse signaling pathways and thus have been one of the most important drug targets. Based on the fact that GPCR-mediated signaling is modulated in a ligand-specific manner such as agonist, inverse agonist, and neutral antagonist (termed ligand efficacy), quantitative characterization of the ligand efficacy is essential for rational design of selective modulators for GPCR targets. As experimental approaches for this purpose are time-, cost-, and labor-intensive, computational tools that can systematically predict GPCR ligand efficacy can have a big impact on GPCR drug design.

View Article and Find Full Text PDF

Motivation: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner.

View Article and Find Full Text PDF

N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties.

View Article and Find Full Text PDF

CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques.

View Article and Find Full Text PDF

Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs' preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide.

View Article and Find Full Text PDF

Pharmacological chaperones are small molecules that bind to proteins and stabilize them against thermal denaturation or proteolytic degradation, as well as assist or prevent certain protein-protein assemblies. These activities are being exploited for the development of treatments for diseases caused by protein instability and/or aberrant protein-protein interactions, such as those found in certain forms of cancers and neurodegenerative diseases. However, designing or discovering pharmacological chaperones for specific targets is challenging because of the relatively featureless protein target surfaces, the lack of suitable chemical libraries, and the shortage of efficient high-throughput screening methods.

View Article and Find Full Text PDF

Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool.

View Article and Find Full Text PDF

Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB.

View Article and Find Full Text PDF

Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly Web interface, CHARMM-GUI Ligand Binder ( http://www.

View Article and Find Full Text PDF

Heparin, a potent anticoagulant used for the prevention of venous thromboembolism, has been recognized as a tumor angiogenesis inhibitor. Its limitation in clinical application for cancer therapy, however, arises from its strong anticoagulant activity, which causes associated adverse effects. In this study, we show the structural correlation of LHT7, a previously developed heparin-based angiogenesis inhibitor, with its influence on VEGF blockade and its decreased anticoagulant activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2gsl076su8btekl2eoab3up6htf7atbj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once