UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using F-nuclear magnetic resonance (NMR) and validated the hits with H- N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies.
View Article and Find Full Text PDFUBE2T is an E2 ubiquitin ligase critical for ubiquitination of substrate and plays important roles in many diseases. Despite the important function, UBE2T is considered as an undruggable target due to lack of a pocket for binding to small molecules with satisfied properties for clinical applications. To develop potent and specific UBE2T inhibitors, we adopted a high-throughput screening assay and two compounds-ETC-6152 and ETC-9004 containing a sulfone tetrazole scaffold were identified.
View Article and Find Full Text PDFUbiquitin-conjugating enzyme E2 T (UBE2T) plays important roles in ubiquitination of proteins through participation in transferring ubiquitin to its substrate. Due to its importance in protein modifications, UBE2T associates with diverse diseases and serves as an important target for drug discovery and development. The crystal structure of UBE2T has been determined and the structure reveals the lack of a druggable pocket for binding to small molecules for clinical applications.
View Article and Find Full Text PDFDengue virus is an important human pathogen affecting people especially in tropical and subtropical regions. Its genome encodes seven non-structural proteins that are important for viral assembly and replication. Dengue NS2B is a membrane protein containing four transmembrane helices and involved in protein-protein interactions.
View Article and Find Full Text PDFCellular inhibitor of apoptosis protein-1 (cIAP-1) is member of inhibitor of apoptosis proteins (IAPs) which can affect apoptosis through interactions with caspases. cIAP-1 is a multi-domain protein and able to regulate apoptosis through interactions with proteins such as caspases and possesses E3 ligase activity. Human cIAP-1 contains three baculovirus IAP repeat (BIR) domains which are critical for protein-protein interactions.
View Article and Find Full Text PDFBacterial tRNA (guanine37-N)-methyltransferase (TrmD) plays important roles in translation, making it an important target for the development of new antibacterial compounds. TrmD comprises two domains with the N-terminal domain binding to the S-adenosyl-L-methionine (SAM) cofactor and the C-terminal domain critical for tRNA binding. Bacterial TrmD is functional as a dimer.
View Article and Find Full Text PDFSyndecans are single-span membrane proteins playing important roles in cell-cell and cell-matrix interactions. The transmembrane domain of syndecans is critical for signal transduction across the cell membrane. Here, the structure of the transmembrane domain of syndecan-2 in detergent micelles was investigated using solution NMR spectroscopy.
View Article and Find Full Text PDFBacterial tRNA modification synthesis pathways are critical to cell survival under stress and thus represent ideal mechanism-based targets for antibiotic development. One such target is the tRNA-(NG37) methyltransferase (TrmD), which is conserved and essential in many bacterial pathogens. Here we developed and applied a widely applicable, radioactivity-free, bioluminescence-based high-throughput screen (HTS) against 116350 compounds from structurally diverse small-molecule libraries to identify inhibitors of Pseudomonas aeruginosa TrmD ( PaTrmD).
View Article and Find Full Text PDFBacterial tRNA (guanine-N)-methyltransferase (TrmD) is an important antibacterial target due to its essential role in translation. TrmD has two domains connected with a flexible linker. The N-terminal domain (NTD) of TrmD contains the S-adenosyl-L-methionine (SAM) cofactor binding site and the C-terminal domain is critical for tRNA binding.
View Article and Find Full Text PDFUnderstanding the composition and clinical importance of the fungal mycobiome was recently identified as a key topic in a "research priorities" consensus statement for bronchiectasis.Patients were recruited as part of the CAMEB study: an international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis patients. The mycobiome was determined in 238 patients by targeted amplicon shotgun sequencing of the 18S-28S rRNA internally transcribed spacer regions ITS1 and ITS2.
View Article and Find Full Text PDFNSD3 is a histone H3 methyltransferase that plays an important role in chromatin biology. A construct containing the methyltransferase domain encompassing residues Q1049-K1299 of human NSD3 was obtained and biochemical activity was demonstrated using histone as a substrate. Here we report the backbone HN, N, Cα, C', and side chain Cβ assignments of the construct in complex with S-adenosyl-L-methionine (SAM).
View Article and Find Full Text PDFBacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV.
View Article and Find Full Text PDFThe human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain.
View Article and Find Full Text PDFBacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria has proven challenging.
View Article and Find Full Text PDFBacterial DNA topoisomerases are important drug targets due to their importance in DNA replication and low homology to human topoisomerases. The N-terminal 24 kDa region of E. coli topoisomerase IV E subunit (eParE) contains the ATP binding pocket.
View Article and Find Full Text PDFBacterial topoisomerase IV (ParE) is essential for DNA replication and serves as an attractive target for antibacterial drug development. The X-ray structure of the N-terminal 24 kDa ParE, responsible for ATP binding has been solved. Due to the accessibility of structural information of ParE, many potent ParE inhibitors have been discovered.
View Article and Find Full Text PDFThe N-terminal ATP binding domain of the DNA gyrase B subunit is a validated drug target for antibacterial drug discovery. Structural information for this domain (pGyrB) from Pseudomonas aeruginosa is still missing. In this study, the interaction between pGyrB and a bis-pyridylurea inhibitor was characterized using several biophysical methods.
View Article and Find Full Text PDFBacterial resistance to antibiotics remains a serious threat to global health. The gyrase B enzyme is a well-validated target for developing antibacterial drugs. Despite being an attractive target for antibiotic development, there are currently no gyrase B inhibitory drugs on the market.
View Article and Find Full Text PDFThe hERG (human ether-a-go-go related gene) potassium channel is a voltage-gated potassium channel containing an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2-S3 linker, S3, S4 and the S4-S5 linker of the hERG channel was purified into detergent micelles.
View Article and Find Full Text PDFThe gating of the hERG channel is regulated by its eag domain through molecular interaction with either the cyclic nucleotide-binding homology domain (CNBHD) or the linker between transmembrane segments 4 and 5. Our NMR study on the purified CNBHD demonstrated that it contains nine β-strands and does not bind cAMP. We show that the eag domain binds to the CBND through an interface containing several disease-associated mutations.
View Article and Find Full Text PDFThe carboxy-terminal region of the KCNH family of potassium channels contains a cyclic-nucleotide binding homology domain (CNBHD) that is important for channel gating and trafficking. The solution structure of the CNBHD of the KCNH potassium of zebrafish was determined using solution NMR spectroscopy. This domain exists as a monomer under solution conditions and adopts a similar fold to that determined by X-ray crystallography.
View Article and Find Full Text PDFThe KCNH family of ion channels plays important roles in heart and nerve cells. The C-terminal region of the KCNH channel contains a cyclic-nucleotide binding homology domain (CNBHD) which is important for channel gating through interaction with the eag domain. To study the solution structure of CNBHD of the KCNH channel of zebrafish, we over-expressed and purified this domain from E.
View Article and Find Full Text PDFThe KCNH channels are voltage-gated potassium channels that play important roles in heart and nerve cells. The N-terminal region of the KCNH channel contains a Per-Arnt-Sim (PAS) domain which is important for the channel gating through interaction with other regions of the channel. To study the solution structure of the N-terminal PAS domain of the KCNH channel from Zebrafish (zNTD), we over-expressed and purified zNTD.
View Article and Find Full Text PDFThe hERG (human ether à go-go related gene) potassium channel is a voltage-gated potassium channel playing important roles in the heart by controlling the rapid delayed rectifier potassium current. The hERG protein contains a voltage-sensor domain (VSD) that is important for sensing voltage changes across the membrane. Mutations in this domain contribute to serious heart diseases.
View Article and Find Full Text PDF