Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development.
View Article and Find Full Text PDFDuring the transition from vegetative to reproductive growth, the shoot meristem of flowering plants acquires the inflorescence identity to generate flowers rather than vegetative tissues. An important regulator that promotes the inflorescence identity in Arabidopsis is AGAMOUS-LIKE 24 (AGL24), a MADS-box transcription factor. Using a functional estradiol-inducible system in combination with microarray analysis, we identified AGL24-induced genes, including SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a floral pathway integrator.
View Article and Find Full Text PDFGenome-wide DNA methylation patterns are established and maintained by the coordinated action of three DNA methyltransferases (DNMTs), DNMT1, DNMT3A and DNMT3B. DNMT3B hypomorphic germline mutations are responsible for two-thirds of immunodeficiency, centromere instability, facial anomalies (ICF) syndrome cases, a rare recessive disease characterized by immune defects, instability of pericentromeric satellite 2-containing heterochromatin, facial abnormalities and mental retardation. The molecular defects in transcription, DNA methylation and chromatin structure in ICF cells remain relatively uncharacterized.
View Article and Find Full Text PDFSevere Arabidopsis (Arabidopsis thaliana) gibberellin (GA)-deficient mutant ga1-3 fails to germinate and is impaired in floral organ development. In contrast, the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant confers GA-independent seed germination and floral development. This fact suggests that GA-regulated transcriptomes for seed germination and floral development are DELLA dependent.
View Article and Find Full Text PDFDefects in some of liver-enriched genes in mammals will cause liver- and/or blood-related diseases. However, due to the fact that embryogenesis happens intrauterinally in the mammals, the function of these liver-enriched genes during liver organogenesis is poorly studied. We report here the identification of 129 genuine liver-enriched genes in adult zebrafish and show that, through in situ hybridization, 69 of these genes are also enriched in the embryonic liver.
View Article and Find Full Text PDFTranscription factor p53 forms a network with associated factors to regulate the cell cycle and apoptosis in response to environmental stresses. However, there is currently no direct genetic evidence to show if or how the p53 pathway functions during organogenesis. Here we present evidence to show that the zebrafish def (digestive-organ expansion factor) gene encodes a novel pan-endoderm-specific factor.
View Article and Find Full Text PDFZebrafish is an excellent model organism for studying vertebrate development and human disease. With the availability of increased numbers of zebrafish mutants and microarray chips, gene expression profiling has become a powerful tool for identification of downstream target genes perturbed by a specific mutation. One of the obstacles often encountered, however, is to isolate large numbers of zebrafish mutant embryos that are indistinguishable in morphology from the wild-type siblings for microarray analysis.
View Article and Find Full Text PDFThe response regulator PprB and its cognate sensor PprA were recently reported as a two-component regulatory system that controls membrane permeability and antibiotic sensitivity of Pseudomonas aeruginosa. We found that a Tn5 insertion mutation in pprB caused a drastic reduction in virulence factor production and cell motility. A transcriptome analysis revealed that 175 genes were regulated by PprB.
View Article and Find Full Text PDFWe had previously reported the cloning of the complete genome of an isolate of hepatitis C virus (HCV), HCV-S1, of genotype 1b. We have constructed a full-length complementary DNA (cDNA) clone of HCV-S1 using nine overlapping cDNA clones that encompassed its entire genome. HCV core, E1, E2, NS-3, -4B, -5A, and -5B proteins were detected in 293T cells by immunoblot analyses when expression of the full-length HCV-S1 was driven under a CMV promoter.
View Article and Find Full Text PDFWe cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetracycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation.
View Article and Find Full Text PDF