Publications by authors named "Hui Ling Chiang"

Background: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion.

View Article and Find Full Text PDF

Background: Chronic urticaria (CU) is comprised of diverse phenotypes, and thus, a shift towards a precision medical approach is warranted in its management.

Methods: This study enrolled 78 patients with CU. Serum erythrocyte sedimentation rate, hemoglobin, hematocrit, eosinophil count, IgE, antinuclear antibody (ANA), and serum diamine oxidase (DAO) levels of the patients were measured and were compared according to the patient's response to second-generation antihistamines (sgAH), corticosteroids, leukotriene receptor antagonist (LTRA), H blockers, and low-histamine diet.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the link between different clinical forms of dermatomyositis (DM) and polymyositis (PM) and myositis-specific antibodies (MSAs), focusing on patients with both conditions and those with systemic autoimmune diseases.
  • Data was collected from 67 DM and 27 PM patients in Taiwan, assessing associations using statistical analyses to determine risks for conditions like interstitial lung diseases (ILDs), malignancy, and specific symptoms related to systemic sclerosis.
  • Results showed that older DM and PM patients with systemic sclerosis had a significantly higher risk for issues like ILDs and malignancy; the presence of certain MSAs also indicated specific risks, such as anti-aminoacyl-tRNA synthetase antibodies correlating with
View Article and Find Full Text PDF

Extracellular vesicles (EVs) play important roles in cell-cell communication. In budding yeast (), EVs function as carriers to transport cargo proteins into the periplasm for storage during glucose starvation. However, intracellular organelles that synthesize these EV-associated cargo proteins have not been identified.

View Article and Find Full Text PDF

Background: Eliminating pseudoallergens is an important element of managing chronic spontaneous urticaria (CSU). Salicylic acid (SA) is a primary pseudoallergen in plant-based foodstuffs. Current dietary recommendations are not applicable in East Asia because data on the SA content of many vegetables and fruits commonly consumed in this region are lacking.

View Article and Find Full Text PDF

Exosomes are small vesicles secreted by a variety of cell types under physiological and pathological conditions. When Saccharomyces cerevisiae are grown in low glucose, small vesicles carrying more than 300 proteins with diverse biological functions are secreted. Upon glucose addition, secreted vesicles are endocytosed that requires cup-shaped organelles containing the major eisosome protein Pil1p at the rims.

View Article and Find Full Text PDF

Background Information: Exosomes are small vesicles secreted from virtually every cell from bacteria to humans. Saccharomyces cerevisiae is a model system to study trafficking of small vesicles in response to changes in the environment. When yeast cells are grown in low glucose, vesicles carrying gluconeogenic enzymes are present as free vesicles and aggregated clusters in the cytoplasm.

View Article and Find Full Text PDF

Exosomes are small vesicles that are released from a variety of cells and are involved in cell-to-cell communication. In humans, exosomes are detected in the plasma, urine, saliva, and cerebrospinal fluid. These vesicles carry multiple cargo proteins, as well as microRNA that affect the transcription of target genes.

View Article and Find Full Text PDF

When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase, isocitrate lyase, and malate dehydrogenase, as well as the non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, are secreted into the periplasm. In the extracellular fraction, these secreted proteins are associated with small vesicles that account for more than 90% of the total number of extracellular structures observed. When glucose is added to glucose-starved cells, FBPase is internalized and associated with clusters of small vesicles in the cytoplasm.

View Article and Find Full Text PDF

Background: Protein secretion is a fundamental process in all living cells. Gluconeogenic enzymes are secreted when Saccharomyces cerevisiae are grown in media containing low glucose. However, when cells are transferred to media containing high glucose, they are internalized.

View Article and Find Full Text PDF

Our previous studies demonstrated that the key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted when Saccharomyces cerevisiae are starved of glucose for a prolonged period of time. In this study, we showed that malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin A are also secreted in glucose-starved cells. Thus, both gluconeogenic and non-gluconeogenic enzymes are secreted via the non-classical pathway.

View Article and Find Full Text PDF

Background: Protein secretion is a fundamental process in all living cells. Proteins can either be secreted via the classical or non-classical pathways. In Saccharomyces cerevisiae, gluconeogenic enzymes are in the extracellular fraction/periplasm when cells are grown in media containing low glucose.

View Article and Find Full Text PDF

In Saccharomyces cerevisia, the key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted into the periplasm during prolonged glucose starvation and is internalized into Vid/endosomes following glucose re-feeding. Fructose-1,6-bisphosphatase does not contain signal sequences required for the classical secretory and endocytic pathways. Hence, the secretion and internalization are mediated via the non-classical pathways.

View Article and Find Full Text PDF

Gluconeogenic enzymes are induced when Saccharomyces cerevisiae are starved of glucose. However, when glucose is added to prolonged starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. The Vid pathway is linked to the nonclassical secretory and internalizing pathways.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

When Saccharomyces cerevisiae are starved of glucose for a prolonged period of time, gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase are induced. However, when glucose is added to prolonged-starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. The Vid pathway merges with the endocytic pathway to remove intracellular and extracellular proteins simultaneously.

View Article and Find Full Text PDF

Background: When glucose is added to Saccharomyces cerevisiae grown in non-fermentable carbon sources, genes encoding ribosomal, cell-cycle, and glycolytic proteins are induced. By contrast, genes involved in mitochondrial functions, gluconeogenesis, and the utilization of other carbon sources are repressed. Glucose also causes the activation of the plasma membrane ATPase and the inactivation of gluconeogenic enzymes and mitochondrial enzymes.

View Article and Find Full Text PDF

Glucose deprivation induces the synthesis of pivotal gluconeogenic enzymes such as fructose-1,6-bisphosphatase, malate dehydrogenase, phosphoenolpyruvate carboxykinase and isocitrate lyase in Saccharomyces cerevisiae. However, following glucose replenishment, these gluconeogenic enzymes are inactivated and degraded. Studies have characterized the mechanisms by which these enzymes are inactivated in response to glucose.

View Article and Find Full Text PDF

When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2), isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are induced. However, when glucose is added to prolonged starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. Recent evidence suggests that the Vid pathway merges with the endocytic pathway at actin patches where endocytic vesicles are formed.

View Article and Find Full Text PDF

Upon starving Saccharomyces cerevisiae of glucose, the key gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2), isocitrate lyase (Icl1p) and phosphoenolpyruvate carboxykinase (Pck1p) are induced. When glucose is added to cells that have been starved for 3 days, these gluconeogenic enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. Moreover, it has been determined that during glucose starvation, these cargo proteins interact with the target of rapamycin complex 1 (TORC1), which is comprised of Tor1p, Tco89p, Lst8p and Kog1p.

View Article and Find Full Text PDF

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is induced when Saccharomyces cerevisiae are starved of glucose. However, when glucose is added to cells that have been starved for 3 days, FBPase is degraded in the vacuole. FBPase is first imported to Vid (vacuole import and degradation) vesicles, and these vesicles then merge with the endocytic pathway.

View Article and Find Full Text PDF

When glucose is added to yeast cells that are starved for 3 days, fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase 2 are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. In this study, we examined the distribution of FBPase at the ultrastructural level. FBPase was observed in areas close to the plasma membrane and in cytoplasmic structures that are heterogeneous in size and density.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, glucose starvation induces key gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2) and phosphoenolpyruvate carboxykinase, while glucose addition inactivates these enzymes. Significant progress has been made identifying mechanisms that mediate the "catabolite inactivation" of FBPase and MDH2. For example, the site of their degradation has been shown to change, depending on the duration of starvation.

View Article and Find Full Text PDF

The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation.

View Article and Find Full Text PDF