Docosahexaenoic acid (DHA), an essential ω-3 polyunsaturated fatty acid, is efficiently biosynthesized by Schizochytrium sp., yet its bioprocess optimization remains constrained by dynamic interdependencies between cultivation parameters and metabolic shifts. This study establishes a framework integrating kinetic modeling and machine learning to improve DHA production.
View Article and Find Full Text PDFAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical syndrome with a mortality rate of up to 40%, and it is characterized by a prominent inflammatory cascade. The inflammasome and pyroptosis play crucial regulatory roles in regulating various inflammatory-related diseases by serving as pivotal signaling platforms for inflammatory responses and mediating the release of substantial quantities of inflammatory factors. Our previous studies confirmed that GC-1, a clinical-stage thyroid hormone analog, effectively mitigated pulmonary fibrosis by restoring mitochondrial function in epithelial cells.
View Article and Find Full Text PDFHere, a high molecular weight polysaccharide preparation from Ophiocordyceps gracilis was utilized as a stabilizer and dispersant to create nanocomposites based on selenium nanoparticles (GSP-1a-SeNPs). The NPs showed the highest stability at a selenium/polysaccharide mass ratio of 1:1, with no significant change after 28 days of storage at 4 °C. The NPs exhibited a symmetrical spheroid structure with an average diameter of 85.
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) is a frequent complication of sepsis. While impaired renal venous reflux indicates renal congestion, the relationship between AKI outcomes and hemodynamic parameters remains debated. This study aimed to investigate the utility of renal venous flow patterns in various regions of septic patients and to explore the association between hemodynamic parameters and renal function prognosis.
View Article and Find Full Text PDFBackground: Dysregulated host response is an important cause of critical illness. Coagulation reaction is the most primitive response and can be used to assess patient status. Coagulation reactions may be amplified in very old patients (VOPs).
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis is a progressive and lethal interstitial lung disease with an unclear etiology and limited treatment options. Fatty acid synthase (FASN) plays various roles in metabolic-related diseases. This study demonstrates that FASN expression is increased in fibroblasts from the lung tissues of patients with idiopathic pulmonary fibrosis and in bleomycin-treated mice.
View Article and Find Full Text PDFUnderstanding the pathobiology of critical illness is essential for patients' prognosis. Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. As part of the host response, procoagulant responses, one of the most primitive reactions in biology, start at the very beginning of diseases and can be monitored throughout the process.
View Article and Find Full Text PDFBackground: The host response plays a critical role in the progression of all critical illnesses, especially in the aging population. With aging becoming a global phenomenon, understanding changes in the host response among elderly patients can provide valuable insights for diagnosis and treatment in the ICU.
Methods: This study included all patients aged 65 and older admitted to our geriatric intensive care unit (GICU).
Sepsis is a clinical syndrome caused by infection, leading to organ dysfunction due to a dysregulated host response. In recent years, its high mortality rate has made it a significant cause of death and disability worldwide. The pathophysiological process of sepsis is related to the body's dysregulated response to infection, with microcirculatory changes serving as early warning signals that guide clinical treatment.
View Article and Find Full Text PDFThe growing utilization of critical care echocardiography (CCE) by clinicians necessitates a meticulous review of clinical conditions in critically ill patients, both before and during the examination. The reviewing process of clinical conditions minimizes the risk of overlooking or misinterpreting crucial findings. This article proposes a comprehensive strategy, namely BILL strategy, to integrate into the CCE protocol, where "B" represents baseline respiratory and hemodynamic support, "I" signifies information gleaned from invasive monitoring, including central venous pressure and thermodilution-derived cardiac output, the first "L" denotes laboratory results such as central venous oxygen saturation, troponin, and brain natriuretic peptide, and the second "L" refers to lung ultrasound data.
View Article and Find Full Text PDFFollowing the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell apoptotic data in Fig. 4 on p. 1389 and the migration and invasion assay data shown in Figs.
View Article and Find Full Text PDFBackground: Ventricular-arterial coupling (VAC) has garnered increasing interest in critical care. The prognostic significance of left ventricular-arterial coupling (LVAC) in this context remains a topic of debate.
Objective: This study aimed to explore the association between LVAC and patient outcomes in sepsis.
Purpose: We previously proposed a new concept, the "critical unit", which covers the structural integrity and function of mitochondria and endothelium. Injury of the critical unit plays a key role in the development of critical illnesses. High levels of inflammation may lead to abnormalities of the critical unit, which is an important mechanism for critical illnesses, and both inflammation and critical unit dysfunction may affect patient prognosis.
View Article and Find Full Text PDFObjective: To investigate the relationship between central venous pressure (CVP) and acute right ventricular (RV) dysfunction in critically ill patients on mechanical ventilation.
Methods: This retrospective study enrolled mechanically ventilated critically ill who underwent transthoracic echocardiographic examination and CVP monitoring. Echocardiographic indices including tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), and tricuspid lateral annular systolic velocity wave (S') were collected to assess RV function.
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA).
View Article and Find Full Text PDFThe peripheral perfusion index (PI) reflects microcirculatory blood flow perfusion and indicates the severity and prognosis of sepsis. The cohort comprised 208 patients admitted to the intensive care unit (ICU) with infection, among which 117 had sepsis. Demographics, medication history, ICU variables, and laboratory indexes were collected.
View Article and Find Full Text PDFBackground: Elevated central venous pressure (CVP) is deemed as a sign of right ventricular (RV) dysfunction. We aimed to characterize the echocardiographic features of RV in septic patients with elevated CVP, and quantify associations between RV function parameters and 30-day mortality.
Methods: We retrospectively reviewed a cohort of septic patients with CVP ≥ 8 mmHg in a tertiary hospital intensive care unit.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation.
View Article and Find Full Text PDF: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR-NK cell efficacy. Claudin-6 (CLDN6) has been reported to be overexpressed in ovarian cancer and may be an attractive target for CAR-NK cells immunotherapy. However, the feasibility of using anti-CLDN6 CAR-NK cells to treat ovarian cancer remains to be explored.
View Article and Find Full Text PDFBackground: The effectiveness of critical care ultrasound has been demonstrated and training for it is urgent. Critical Care Ultrasound Study Group (CCUSG) has been dedicated to ultrasound training. The aim of the study was to evaluate course structure and training effect and provide improvement suggestions for future training.
View Article and Find Full Text PDFJ Intensive Care Med
January 2024
The high respiratory and cardiac drive is essential to the host-organ unregulated response. When a primary disease and an unregulated secondary response are uncontrolled, the patient may present in a high respiratory and cardiac drive state. High respiratory drive can cause damage to the lungs, pulmonary circulation, and diaphragm, while high cardiac drive can lead to fluid leakage and infiltration as well as pulmonary interstitial edema.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive.
Methods: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis.