Background: Despite being essential in patients with acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) may cause lung injury and hemodynamic instability. Mechanical power (MP) may describe the net injurious effects of MV, but whether it reflects the hemodynamic effects of MV is currently unclear. We hypothesized that MP is also associated with cardiac output (CO) and pulmonary blood flow (PBF).
View Article and Find Full Text PDFBackground: Subject-ventilator asynchrony (SVA) was shown to be associated with negative clinical outcomes. To elucidate pathophysiology pathways and effects of SVA on lung tissue histology a reproducible animal model of artificially induced asynchrony was developed and evaluated.
Methods: Alterations in ventilator parameters were used to induce the three main types of asynchrony: ineffective efforts (IE), auto-triggering (AT), and double-triggering (DT).
Background: During one-lung ventilation (OLV), positive end-expiratory pressure (PEEP) can improve lung aeration but might overdistend lung units and increase intrapulmonary shunt. The authors hypothesized that higher PEEP shifts pulmonary perfusion from the ventilated to the nonventilated lung, resulting in a U-shaped relationship with intrapulmonary shunt during OLV.
Methods: In nine anesthetized female pigs, a thoracotomy was performed and intravenous lipopolysaccharide infused to mimic the inflammatory response of thoracic surgery.
Background: Mechanical ventilation with variable tidal volumes (V-VCV) has the potential to improve lung function during general anesthesia. We tested the hypothesis that V-VCV compared to conventional volume-controlled ventilation (C-VCV) would improve intraoperative arterial oxygenation and respiratory system mechanics in patients undergoing thoracic surgery under one-lung ventilation (OLV).
Methods: Patients were randomized to V-VCV (n = 39) or C-VCV (n = 39).
Mechanical ventilation (MV) is a life supporting therapy but may also cause lung damage. This phenomenon is known as ventilator-induced lung injury (VILI). A potential pathomechanisms of ventilator-induced lung injury may be the stretch-induced production and release of cytokines and pro-inflammatory molecules from the alveolar epithelium.
View Article and Find Full Text PDFStudy Objective: We aimed to characterize intra-operative mechanical ventilation with low or high positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RM) regarding intra-tidal recruitment/derecruitment and overdistension using non-linear respiratory mechanics, and mechanical power in obese surgical patients enrolled in the PROBESE trial.
Design: Prospective, two-centre substudy of the international, multicentre, two-arm, randomized-controlled PROBESE trial.
Setting: Operating rooms of two European University Hospitals.
. Global and regional transpulmonary pressure (P) during one-lung ventilation (OLV) is poorly characterized. We hypothesized that global and regional P and driving P (ΔP) increase during protective low tidal volume OLV compared to two-lung ventilation (TLV), and vary with body position.
View Article and Find Full Text PDFBackground: Variable ventilation recruits alveoli in atelectatic lungs, but it is unknown how it compares with conventional recruitment manoeuvres.
Objectives: To test whether mechanical ventilation with variable tidal volumes and conventional recruitment manoeuvres have comparable effects on lung function.
Design: Randomised crossover study.
Background: Atelectasis is one of the most common respiratory complications in patients undergoing open abdominal surgery. Peripheral oxygen saturation (SpO ) and forced vital capacity (FVC) are bedside indicators of postoperative respiratory dysfunction. The aim of this study was to describe the changes in lung aeration, using quantitative analysis of magnetic resonance imaging (MRI) and the diagnostic accuracy of SpO and FVC to detect postoperative atelectasis.
View Article and Find Full Text PDF: Mechanical ventilation (MV) inflicts stress on the lungs, initiating or increasing lung inflammation, so-called ventilator-induced lung injury (VILI). Besides overdistention, cyclic opening-and-closing of alveoli (atelectrauma) is recognized as a potential mechanism of VILI. The dynamic stretch may be reduced by positive end-expiratory pressure (PEEP), which in turn increases the static stretch.
View Article and Find Full Text PDFBackground: Identification of lung parenchyma on computer tomographic (CT) scans in the research setting is done semi-automatically and requires cumbersome manual correction. This is especially true in pathological conditions, hindering the clinical application of aeration compartment (AC) analysis. Deep learning based algorithms have lately been shown to be reliable and time-efficient in segmenting pathologic lungs.
View Article and Find Full Text PDFMechanical ventilation (MV) may initiate or worsen lung injury, so-called ventilator-induced lung injury (VILI). Although different mechanisms of VILI have been identified, research mainly focused on single ventilator parameters. The mechanical power (MP) summarizes the potentially damaging effects of different parameters in one single variable and has been shown to be associated with lung damage.
View Article and Find Full Text PDFVariable pressure support ventilation (vPSV) is an assisted ventilation mode that varies the level of pressure support on a breath-by-breath basis to restore the physiological variability of breathing activity. We aimed to compare the effects of vPSV at different levels of variability and pressure support (Δ ) in patients with acute respiratory distress syndrome (ARDS). This study was a crossover randomized clinical trial.
View Article and Find Full Text PDFThe incidence of hypoxemia during one-lung ventilation (OLV) is as high as 10%. It is also partially determined by the distribution of perfusion. During thoracic surgery, different body positions are used, such as the supine, semilateral, lateral, and prone positions, with such positions potentially influencing the distribution of perfusion.
View Article and Find Full Text PDFBackground: Lung recruitment manoeuvres and positive end-expiratory pressure (PEEP) can improve lung function during general anaesthesia. Different recruitment manoeuvre strategies have been described in large international trials: in the protective ventilation using high vs. low PEEP (PROVHILO) strategy, tidal volume (VT) was increased during volume-controlled ventilation; in the individualised peri-operative open-lung approach vs.
View Article and Find Full Text PDFBackground: Flow-controlled ventilation (FCV) allows expiratory flow control, reducing the collapse of the airways during expiration. The performance of FCV during one-lung ventilation (OLV) under intravascular normo- and hypovolaemia is currently unknown. In this explorative study, we hypothesised that OLV with FCV improves PaO and reduces mechanical power compared to volume-controlled ventilation (VCV).
View Article and Find Full Text PDFBackground: Continuous external negative pressure (CENP) during positive pressure ventilation can recruit dependent lung regions. We hypothesised that CENP applied regionally to the thorax or the abdomen only, increases the caudal end-expiratory transpulmonary pressure depending on positive end-expiratory pressure (PEEP) in lung-injured pigs. Eight pigs were anesthetised and mechanically ventilated in the supine position.
View Article and Find Full Text PDFRemote imaging photoplethysmography (iPPG) senses the cardiac pulse in outer skin layers and is responsive to mean arterial pressure and pulse pressure in critically ill patients. Whether iPPG is sufficiently sensitive to monitor cutaneous perfusion is not known. This study aimed at determining the response of iPPG to changes in cutaneous perfusion measured by Laser speckle imaging (LSI).
View Article and Find Full Text PDFBackground: Variable assisted mechanical ventilation has been shown to improve lung function and reduce lung injury. However, differences between extrinsic and intrinsic variability are unknown.
Objective: To investigate the effects of neurally adjusted ventilatory assist (NAVA, intrinsic variability), variable pressure support ventilation (Noisy PSV, extrinsic variability) and conventional pressure-controlled ventilation (PCV) on lung and diaphragmatic function and damage in experimental acute respiratory distress syndrome (ARDS).
Background: Mechanical ventilation with variable tidal volumes (V) may improve lung function and reduce ventilator-induced lung injury in experimental acute respiratory distress syndrome (ARDS). However, previous investigations were limited to less than 6 h, and control groups did not follow clinical standards. We hypothesised that 24 h of mechanical ventilation with variable V reduces pulmonary inflammation (as reflected by neutrophil infiltration), compared with standard protective, nonvariable ventilation.
View Article and Find Full Text PDFBackground: Electrical impedance tomography (EIT) with indicator dilution may be clinically useful to measure relative lung perfusion, but there is limited information on the performance of this technique.
Methods: Thirteen pigs (50-66 kg) were anaesthetised and mechanically ventilated. Sequential changes in ventilation were made: (i) right-lung ventilation with left-lung collapse, (ii) two-lung ventilation with optimised PEEP, (iii) two-lung ventilation with zero PEEP after saline lung lavage, (iv) two-lung ventilation with maximum PEEP (20/25 cm HO to achieve peak airway pressure 45 cm HO), and (v) two-lung ventilation under unilateral pulmonary artery occlusion.
Objectives: To determine the impact of positive end-expiratory pressure during mechanical ventilation with and without spontaneous breathing activity on regional lung inflammation in experimental nonsevere acute respiratory distress syndrome.
Design: Laboratory investigation.
Setting: University hospital research facility.