Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations.
View Article and Find Full Text PDFCyclin-dependent kinase (CDK) 4 is a master integrator that couples mitogenic/oncogenic signalling cascades with the inactivation of the central oncosuppressor Rb and the cell cycle. Its activation requires binding to a D-type cyclin and then T-loop phosphorylation at T172 by the only identified CDK-activating kinase in animal cells, cyclin H-CDK7. In contrast with the observed constitutive activity of cyclin H-CDK7, we have recently identified the T172-phosphorylation of cyclin D-bound CDK4 as a crucial cell cycle regulatory target.
View Article and Find Full Text PDFCyclin-dependent kinase (CDK)4 is a master integrator that couples mitogenic and antimitogenic extracellular signals with the cell cycle. It is also crucial for many oncogenic transformation processes. In this overview, we address various molecular features of CDK4 activation that are critical but remain poorly known or debated, including the regulation of its association with D-type cyclins, its subcellular location, its activating Thr172-phosphorylation and the roles of Cip/Kip CDK "inhibitors" in these processes.
View Article and Find Full Text PDFCyclin-dependent kinase 4 (CDK4) is a master integrator of mitogenic and antimitogenic extracellular signals. It is also crucial for many oncogenic transformation processes. Various molecular features of CDK4 activation remain poorly known or debated, including the regulation of its association with D-type cyclins, its activating Thr172 phosphorylation, and the roles of Cip/Kip CDK "inhibitors" in these processes.
View Article and Find Full Text PDF