A new multidimensional chromatographic instrument has been developed to perform both SFC-GC×GC and SFC×GC×GC, in response to the challenge of complex matrices characterization. The design of this online system is fully described and enriched by theoretical and practical discussions. A new interface has been investigated: this interface allows the temporary storage of SFC fractions inside sampling loops before their quantitative transfer toward the GC×GC.
View Article and Find Full Text PDFExtending the knowledge on sulfur-containing compounds is crucial for the petroleum industry because they contribute to atmospheric pollution by combustion. Most of them are concentrated in heavy petroleum cuts, such as vacuum gas oils (VGOs). However, the resolution of the existing analytical methods does not allow a quantitative speciation of S-compounds contained in VGOs.
View Article and Find Full Text PDFExtending the knowledge related to nitrogen-containing compounds presents an important interest for the petroleum industry due to their implication in atmosphere pollution as well as their inhibitive or refractive behaviour towards hydroprocessing. Most of the nitrogenated species are concentrated in heavy petroleum cuts. As no analytical method is resolutive enough for these heavy cuts, particularly regarding nitrogen-containing compounds, a new approach is needed.
View Article and Find Full Text PDFIn a context of environmental preservation, purification and conversion of heavy petroleum cuts into high-quality fuel becomes essential. The interest for the characterization of those very complex matrices becomes a trendy analytical challenge, when it comes to get molecular information for the optimization of industrial processes. Among new analytical techniques, high-temperature 2-D GC has recently proved its applicability to heavy petroleum matrices, but lacks in selectivity to separate all chemical groups.
View Article and Find Full Text PDFIn a tense energetic context, the characterization of heavy petroleum fractions becomes essential. Conventional comprehensive two-dimensional gas chromatography (2D-GC or GCxGC) is widely used for middle distillates analysis, but only a few applications are devoted to these heavier fractions. In this paper, it is shown how the optimization of GCxGC separation allowed the determination of suitable high-temperature (HT) conditions, adjusting column properties and operating conditions.
View Article and Find Full Text PDF