Publications by authors named "Hugues Bodiguel"

Aqueous foam injection is a promising technique for in-situ remediation of soil and aquifers contaminated by petroleum products. However, the application efficiency is strongly hindered by foam's instability upon contact with hydrocarbons. Addressing this, we propose a new binary surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cocamidopropyl Hydroxysultaine (CAHS).

View Article and Find Full Text PDF

Airway mucus works as a protective barrier in the human body, as it entraps pathogens that will be later cleared from the airways by ciliary transport or by coughing, thus featuring the rheological properties of a highly stretchable gel. Nonetheless, the study of these physical barrier as well as transport properties remains limited due to the restricted and invasive access to lungs and bronchi to retrieve mucus and to the poor repeatability inherent to native mucus samples. To overcome these limits, we report on a biobased synthetic mucus prepared from snail slime and multibranched thiol cross-linker, which are able to establish disulfide bonds, in analogy with the disulfide bonding of mucins, and therefore build viscoelastoplastic hydrogels.

View Article and Find Full Text PDF

The rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements.

View Article and Find Full Text PDF

A foam film, free to move and stabilized with tetradecyltrimethylammonium bromide or sodium dodecylsulfate surfactants, is deposited inside of a cylindrical tube. It separates the tube into two distinct gaseous compartments. The first compartment is filled with air, while the second one contains a mixture of air and perfluorohexane vapor (CF), which is a barely water-soluble fluorinated compound.

View Article and Find Full Text PDF

We study flows of hydrolized polyacrylamide solutions in two dimensional porous media made using microfluidics, for which elastic effects are dominant. We focus on semi-dilute solutions (0.1%-0.

View Article and Find Full Text PDF

The following is a report on an experimental technique that allows one to quantify and map the velocity field with very high resolution and simple equipment in large 2D devices. Illumination through a grid is proposed to reinforce the contrast in the images and allow one to detect seeded particles that are pixel-sized or even smaller. The velocimetry technique that we have reported is based on the auto-correlation functions of the pixel intensity, which we have shown are directly related to the magnitude of the local average velocity.

View Article and Find Full Text PDF

We study the repartition of monodisperse bubbles at the inlet node of an asymmetric microfluidic loop for low to high bubble densities. In large loops, we evidence a new regime. Contrary to the classical belief, we point out that bubbles are directed not towards the arm having the higher total flow rate but towards the arm with the higher water flow rate at low and moderate relative gas flow rates.

View Article and Find Full Text PDF

We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates.

View Article and Find Full Text PDF

We report the development and analysis of a velocimetry technique based on the short time displacement of molecular tracers, tagged thanks to photobleaching. We use confocal microscopy to achieve a good resolution transverse to the observation field in the direction of the velocity gradient. The intensity profiles are fitted by an approximate analytical model which accounts for hydrodynamic dispersion, and allow access to the local velocity.

View Article and Find Full Text PDF

We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how thick liquid solutions behave when pushed through tiny slits using a special light method.
  • They found that when the space gets smaller than a tiny measurement, the liquid flows easier.
  • However, the smooth slipping of the liquid is less noticeable in really tiny spaces, which means that large molecules can't move around as easily.
View Article and Find Full Text PDF

Velocity measurement is a key issue when studying flows below the micron scale, due to the lack of sensitivity of conventional detection techniques. We present an approach based on fluorescence photobleaching to evaluate flow velocity at the nanoscale by direct visualization. Solutions containing a fluorescent dye are injected into nanoslits.

View Article and Find Full Text PDF

We present an experimental study of drainage in two-dimensional porous media exhibiting bimodal pore size distributions. The role of the pore size heterogeneity is investigated by measuring separately the desaturation curves of the two pore populations. The displaced wetting fluid remains trapped in small pores at low capillary numbers and is swept only above a critical capillary number proportional to the permeability of the big pores network.

View Article and Find Full Text PDF

This paper presents some experimental results on two-phase flows in model two-dimensional (2D) porous media with different wetting properties. Standard microfluidic techniques are used to fabricate the 2D micromodels that consist of a network of straight microchannels having heterogeneous sizes. The invasion mechanism is analyzed quantitatively for partial and total wetting conditions, and for various stable viscosity ratios and capillary pressure heterogeneity.

View Article and Find Full Text PDF

This paper reports some experimental results on two-phase flows in model two-dimensional porous media. Standard microfluidic techniques are used to fabricate networks of straight microchannels and to control the throat size distribution. We analyze both the invasion mechanism of the medium by a nonwetting fluid and the drainage after the percolation for capillary numbers lying between 10(-7) and 10(-2).

View Article and Find Full Text PDF

Pattern formation from a silica colloidal suspension that is evaporating has been studied when a movement is imposed to the contact line. This article focuses on the stick-slip regime observed for very low contact line velocities. A capillary rise experiment has been specially designed for the observation and allows us to measure the pinning force that increases during the pinning of the contact line on the growing deposit.

View Article and Find Full Text PDF

The dewetting of thin polystyrene films (20-500 nm) on a liquid substrate is studied at time scales that are long compared to the reptation time. It is shown that the kinetics correspond to those of purely viscous flow and that the viscosity measured by this technique is, for the thickest films, consistent with bulk measurements. Films on the order of the coil size are then studied.

View Article and Find Full Text PDF