The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e.
View Article and Find Full Text PDFDengue fever is the most important vector-borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue.
View Article and Find Full Text PDFBackground: Dengue fever is the most important vector-borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Infection by one serotype elicits long-lasting immunity to that serotype but not the other three.
View Article and Find Full Text PDFThe Flavivirus genus includes widespread and severe human pathogens like the four serotypes of dengue virus (DENV1 to DENV4), yellow fever virus, Japanese encephalitis virus and West Nile virus. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by virus neutralizing antibodies. Its structural, antigenic and immunogenic properties have been thoroughly studied contrary to its physico-chemical properties.
View Article and Find Full Text PDFBordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are three closely related pathogens. They all possess the gene coding for the Bordetella type three secretion system effector A (bteA) toxin that became a focus of interest since it was demonstrated that B. pertussis Japanese non-vaccine-type isolates produce BteA unlike vaccine-type isolates.
View Article and Find Full Text PDFThe human RPSA [ribosomal protein SA; also known as LamR1(laminin receptor 1)] belongs to the ribosome but is also a membrane receptor for laminin, growth factors, prion, pathogens and the anticarcinogen EGCG (epigallocatechin-gallate). It contributes to the crossing of the blood-brain barrier by neurotropic viruses and bacteria, and is a biomarker of metastasis. RPSA includes an N-terminal domain, which is folded and homologous to the prokaryotic RPS2, and a C-terminal extension, which is intrinsically disordered and conserved in vertebrates.
View Article and Find Full Text PDFThe human ribosomal protein SA (RPSA) is a multilocus protein, present in most cellular compartments. It is a multifunctional protein, which belongs to the ribosome but is also a membrane receptor for laminin, growth factors, prion, pathogenic microorganisms, toxins, and the anticarcinogen epigallocatechin gallate. It contributes to the crossing of the blood-brain barrier by neurotropic viruses and bacteria and is used as a biomarker of metastasis.
View Article and Find Full Text PDFThe dengue virus (DENV) complex is composed of four distinct but serologically related flaviviruses, which together cause the present-day most important emerging viral disease. Although DENV infection induces lifelong immunity against viruses of the same serotype, the antibodies raised appear to contribute to severe disease in cases of heterotypic infections. Understanding the mechanisms of DENV neutralization by antibodies is, therefore, crucial for the design of vaccines that simultaneously protect against all four viruses.
View Article and Find Full Text PDFAntibodies and artificial families of antigen binding proteins (AgBP) are constituted by a connected set of hypervariable (or randomized) residue positions, supported by a constant polypeptide backbone. The residues that form the binding site for a given antigen, are selected among the hypervariable residues. We showed that it is possible to transform any AgBP of these families into a reagentless fluorescent biosensor, specific of the target antigen, simply by coupling a solvatochromic fluorophore to one of the hypervariable residues that have little or no importance for the interaction with the antigen, after changing this residue into cysteine by mutagenesis.
View Article and Find Full Text PDFEarly diagnosis and appropriate treatment are key elements of malaria control programs in endemic areas. A major step forward in recent years has been the production and use of rapid diagnostic tests (RDTs) in settings where microscopy is impracticable. Many current RDTs target the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) released in the plasma of infected individuals.
View Article and Find Full Text PDFThe respiratory syncytial virus (RSV) is an important human pathogen, yet neither a vaccine nor effective therapies are available to treat infection. To help elucidate the replication mechanism of this RNA virus, we determined the three-dimensional (3D) crystal structure at 3.3 A resolution of a decameric, annular ribonucleoprotein complex of the RSV nucleoprotein (N) bound to RNA.
View Article and Find Full Text PDFDesigned ankyrin repeat proteins (DARPins) can be selected from combinatorial libraries to bind any target antigen. They show high levels of recombinant expression, solubility and stability, and contain no cysteine residue. The possibility of obtaining, from any DARPin and at high yields, fluorescent conjugates which respond to the binding of the antigen by a variation of fluorescence, would have numerous applications in micro- and nano-analytical sciences.
View Article and Find Full Text PDFDengue virus (DV) and West Nile virus (WNV) have become a global concern due to their widespread distribution and their ability to cause a variety of human diseases. Antiviral immune defenses involve NK cells. In the present study, we investigated the interaction between NK cells and these two flaviviruses.
View Article and Find Full Text PDFFab 35PA83 is an antibody fragment of non-human primate origin that neutralizes the anthrax lethal toxin. Human antibodies are usually preferred when clinical use is envisioned, even though their framework regions (FR) may carry mutations introduced during affinity maturation. These hypermutations can be immunogenic and therefore FR that are encoded by human germline genes, encountered in IgMs and thus part of the "self" proteins, are preferable.
View Article and Find Full Text PDFThe enhancement of antibody affinity by mutagenesis targeting only complementarity determining regions has the advantage of respecting the framework regions, which are important for tolerance if clinical use is envisaged. Here, starting from a Fab (antigen-binding fragment; 35PA(83)) capable of neutralizing the lethal toxin of anthrax and having an affinity of 3.4 nM for its antigen, a phage-displayed library of variants where all six complementarity determining regions (73 positions) were targeted for mutagenesis was built.
View Article and Find Full Text PDFDengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV).
View Article and Find Full Text PDFDengue is caused by a taxonomic group of four viruses, dengue virus types 1-4 (DENV1-DENV4). A molecular understanding of the antibody-mediated protection against this disease is critical to design safe vaccines and therapeutics. Here, the energetic epitope of antibody mAb4E11, which neutralizes the four serotypes of DENV but no other flavivirus, and binds domain 3 (ED3) of their envelope glycoprotein, was characterized.
View Article and Find Full Text PDFNumerous approaches have been described to obtain variable fragments of antibodies (Fv or scFv) that are sufficiently stable for their applications. Here, we combined several knowledge-based methods to increase the stability of pre-existing scFvs by design. Firstly, the consensus sequence approach was used in a non-stringent way to predict a large basic set of potentially stabilizing mutations.
View Article and Find Full Text PDFDengue is a re-emerging viral disease, affecting approx. 100 million individuals annually. The monoclonal antibody mAb4E11 neutralizes the four serotypes of the dengue virus, but not other flaviviruses.
View Article and Find Full Text PDFThe fluorescence of tryptophan is used as a signal to monitor the unfolding of proteins, in particular the intensity of fluorescence and the wavelength of its maximum lambda(max). The law of the signal is linear with respect to the concentrations of the reactants for the intensity but not for lambda(max). Consequently, the stability of a protein and its variation upon mutation cannot be deduced directly from measurements made with lambda(max).
View Article and Find Full Text PDFThe variable fragment (Fv) of an antibody can be transformed into a reagentless fluorescent biosensor by mutating a residue into a cysteine in the neighborhood of the paratope (antigen-binding site) and then coupling an environment-sensitive fluorophore, e.g., N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (IANBD ester), to the mutant cysteine.
View Article and Find Full Text PDFThe possibility of obtaining, from any antibody, a fluorescent conjugate which responds to the binding of the antigen by a variation of fluorescence, would be of great interest in the micro- and nano-analytical sciences. This possibility was explored with antibody mAb4E11, which is directed against the dengue virus and for which no structural data is available. Three rules of design were developed to identify residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis.
View Article and Find Full Text PDFThe construction of hybrids between the variable fragment (Fv) of antibodies and protein MalE of Escherichia coli at the genetic level makes possible their preparation in a functional state, independently of any interaction with the antigen. We used such hybrids and a mutagenesis approach to study the recognition between antibody D1.3 and its antigen lysozyme, and its maturation.
View Article and Find Full Text PDFThe possibility of obtaining from any antibody a fluorescent conjugate which responds to the binding of the antigen by a variation of its fluorescence, would be of great interest in the analytical sciences and for the construction of protein chips. This possibility was explored with antibody mAbD1.3 directed against hen egg white lysozyme.
View Article and Find Full Text PDFThe structure of a recombinant protein, TyrRS(delta4), corresponding to the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase, has been solved, and its dynamics have been studied by nuclear magnetic resonance (NMR). It is the first structure described for such a domain of a tyrosyl-tRNA synthetase. It consists of a five-stranded beta sheet, packed against two alpha helices on one side and one alpha helix on the other side.
View Article and Find Full Text PDF