Photolysis of 1- and 5-aryltetrazoles at 5-10 K using a 266 nm laser immediately generates their triplet excited states, which are characterized by their electron spin resonance (ESR) spectra with zero-field splitting parameters D = 0.12-0.13 cm and E = 0.
View Article and Find Full Text PDFPhotolysis of trimethylsilyl azide at 254 nm in Ar matrix at 15 K generates the triplet ground state trimethylsilylnitrene 2 aT, observed by ESR spectroscopy (|D/hc|=1.540 cm ; |E/hc|=0.0002 cm ).
View Article and Find Full Text PDFThe imidoylnitrene 8, N-methyl-C-phenylimidoylnitrene, has been generated by laser photolysis of 1-methyl-5-phenyltetrazole 6 at 5 K and characterized by its ESR spectrum (|D/hc|=0.9602, |E/hc|=0.0144 cm ).
View Article and Find Full Text PDFThe structures, energies, and rearrangements of imidoylnitrenes H-C(═NH)-N, HN-C(═NH)-N, Ph-C(═NH)-N, H-C(═NPh)-N, and MeO-C(═NCN)-N (10a-e) are investigated at DFT and CASPT2 levels of theory. Imidoylnitrenes are potentially formed by pyrolysis or photolysis of azides, tetrazoles (6, 6'), or sydnones. Unlike most acylnitrenes, the imidoylnitrenes 10 have triplet ground states.
View Article and Find Full Text PDFThe thermal rearrangements of benzotriazole 1 to fulvenimine 4 and 1H-benzazirine 7 are investigated at DFT and CASPT2 levels of theory. Ring opening of benzotriazole 1 to 2-diazo-cyclohexadienimine 2 followed by N elimination affords Z- and E-2-iminocyclohexadienylidenes 3, which have triplet ground states (A″). The open-shell singlet (OSS) (A″) and closed-shell singlet (CSS) (A') of 3 lie ∼15 and 40 kcal/mol higher in free energy, respectively.
View Article and Find Full Text PDFPhenyl-C61-butyric acid methyl ester (PCBM) is polymerized simply using a one-pot reaction to yield soluble, high molecular weight polymers. The sterically controlled azomethine ylide cycloaddition polymerization (SACAP) is demonstrated to be highly adaptable and yields polymers with probable Mn≈ 24 600 g mol(-1) and Mw≈ 73 800 g mol(-1). Products are metal-free and of possible benefit to organic and hybrid photovoltaics and electronics as they form thin films from solution and have raised LUMOs.
View Article and Find Full Text PDF