Publications by authors named "Hugo S Diaz"

Aims: In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases.

View Article and Find Full Text PDF

Sleep apnea (SA) is highly prevalent in patients with chronic kidney disease and may contribute to the development and/or progression of this condition. Previous studies suggest that dysregulation of renal hemodynamics and oxygen flux may play a key role in this process. The present study sought to determine how chronic intermittent hypoxia (CIH) associated with SA affects regulation of renal artery blood flow (RBF), renal microcirculatory perfusion (RP), glomerular filtration rate (GFR), and cortical and medullary tissue PO as well as expression of genes that could contribute to renal injury.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a prevalent cardiovascular disease characterized by coronary artery blood flow reductions caused by lipid deposition and oxidation within the coronary arteries. Dyslipidemia is associated with local tissue damage by oxidative stress/inflammation and carotid bodies (CB) peripheral chemoreceptors are heavily modulated by both reactive oxygen species and pro-inflammatory molecules (i.e.

View Article and Find Full Text PDF

A significant percentage of COVID-19 survivors develop long-lasting cardiovascular sequelae linked to autonomic nervous system dysfunction, including fatigue, arrhythmias, and hypertension. This post-COVID-19 cardiovascular syndrome is one facet of "long-COVID," generally defined as long-term health problems persisting/appearing after the typical recovery period of COVID-19. Despite the fact that this syndrome is not fully understood, it is urgent to develop strategies for diagnosing/managing long-COVID due to the immense potential for future disease burden.

View Article and Find Full Text PDF

The central nervous system (CNS) is particularly vulnerable to oxidative stress and inflammation, which affect neuronal function and survival. Nowadays, there is great interest in the development of antioxidant and anti-inflammatory compounds extracted from natural products, as potential strategies to reduce the oxidative/inflammatory environment within the CNS and then preserve neuronal integrity and brain function. However, an important limitation of natural antioxidant formulations (mainly polyphenols) is their reduced in vivo bioavailability.

View Article and Find Full Text PDF

Aberrant carotid body chemoreceptor (CBC) function contributes to increased sympathetic nerve activity (SNA) and reduced renal blood flow (RBF) in chronic heart failure (CHF). Intermittent asphyxia (IA) mimicking sleep apnea is associated with additional increases in SNA and may worsen reductions in RBF and renal PO2 (RPO2) in CHF. The combined effects of decreased RBF and RPO2 may contribute to biochemical changes precipitating renal injury.

View Article and Find Full Text PDF

The autonomic nervous system (ANS) plays an important role in the coordination of several physiological functions including sleep/wake process. Significant changes in ANS activity occur during wake-to-sleep transition maintaining the adequate cardiorespiratory regulation and brain activity. Since sleep is a complex homeostatic function, partly regulated by the ANS, it is not surprising that sleep disruption trigger and/or evidence symptoms of ANS impairment.

View Article and Find Full Text PDF

Background: Breathing disorders (BD) (apnoeas/hypopneas, periodic breathing) are highly prevalent in chronic heart failure (CHF) and are associated with altered central respiratory control. Ample evidence identifies the retrotrapezoid nucleus (RTN) as an important chemosensitivity region for ventilatory control and generation of BD in CHF, however little is known about the cellular mechanisms underlying the RTN/BD relationship. Within the RTN, astrocyte-mediated purinergic signalling modulates respiration, but the potential contribution of RTN astrocytes to BD in CHF has not been explored.

View Article and Find Full Text PDF

Background: Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology.

View Article and Find Full Text PDF

Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program.

View Article and Find Full Text PDF

Enhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats.

View Article and Find Full Text PDF

Background And Objective: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders.

View Article and Find Full Text PDF

Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload.

View Article and Find Full Text PDF

Alterations in connexins and specifically in 43 isoform (Cx43) in the heart have been associated with a high incidence of arrhythmogenesis and sudden death in several cardiac diseases. We propose to determine salutary effect of Cx43 mimetic peptide Gap27 in the progression of heart failure. High-output heart failure was induced by volume overload using the arterio-venous fistula model (AV-Shunt) in adult male rats.

View Article and Find Full Text PDF

Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood.

View Article and Find Full Text PDF

Key Points: A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones.

View Article and Find Full Text PDF

Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow.

View Article and Find Full Text PDF

Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients.

View Article and Find Full Text PDF

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process.

View Article and Find Full Text PDF

Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF.

View Article and Find Full Text PDF

Enhanced carotid body (CB) chemoreflex function is strongly related to cardiorespiratory disorders and disease progression in heart failure (HF). The mechanisms underlying CB sensitization during HF are not fully understood, however previous work indicates blood flow per se can affect CB function. Then, we hypothesized that the CB-mediated chemoreflex drive will be enhanced only in low output HF but not in high output HF.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlvmpel89rtnf0hspqglgc1p1jlg9va9l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once