Publications by authors named "Hugo Peluffo"

Article Synopsis
  • Emerging research indicates that immune receptors, like CD300f, may play vital roles in processes linked to aging, such as metabolism, inflammation, and cognitive decline.
  • CD300f is a unique immune receptor that balances activating and inhibitory signals, impacting inflammation and brain health.
  • Studies on CD300f knockout mice showed reduced lifespan and healthspan, along with signs of inflammation, cognitive decline, and altered metabolic processes, highlighting its importance for healthy aging.
View Article and Find Full Text PDF
Article Synopsis
  • Emerging evidence indicates that immune receptors like CD300f play a key role in microglial and macrophage functions, influencing inflammation and neuronal survival.
  • CD300f acts as a modulator for inflammation and efferocytosis, showing neuroprotective effects post-brain injury through its interactions with neurons.
  • Experimental results demonstrate that blocking CD300f leads to increased neuronal death and a potentially neurotoxic environment, while the addition of GDNF can mitigate this effect.
View Article and Find Full Text PDF

Activating and inhibitory immune receptors play a critical role in regulating systemic and central nervous system (CNS) immune and inflammatory processes. The CD200R1 immunoreceptor induces a restraining signal modulating inflammation and phagocytosis in the CNS under different inflammatory conditions. However, it remains unknown whether CD200R1 has a role in modulating the inflammatory response after a peripheral nerve injury, an essential component of the successful regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Generalized Anxiety Disorder (GAD) is common and linked to immune system changes, with CD300f immune receptors found to affect synapse remodeling and immune responses.
  • Research using CD300f knockout mice showed that male mice without this receptor exhibited lower anxiety behaviors in several tests.
  • A study involving 1111 individuals found that a specific genetic variation in the CD300f gene offered protection against GAD in men, highlighting the need to understand sex-based differences in anxiety and potential treatments.
View Article and Find Full Text PDF

A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a complex and progressive brain injury with no approved treatments that needs both short- and long-term therapeutic strategies to cope with the variety of physiopathological mechanisms involved. In particular, neuroinflammation is a key process modulating TBI outcome, and the potentiation of these mechanisms by pro-inflammatory gene therapy vectors could contribute to the injury progression. Here, we evaluate in the controlled cortical impact model of TBI, the safety of integrative-deficient lentiviral vectors (IDLVs) or the non-viral HNRK recombinant modular protein/DNA nanovector.

View Article and Find Full Text PDF

The interaction between CD200 and its receptor CD200R1 is among the central regulators of microglia and macrophage phenotype. However, it remains to be established whether, in the context of a traumatic CNS injury, CD200R1 act as a negative regulator of these particular innate immune cells, and if the exogenous delivery of CD200 may ameliorate neurological deficits. In the present study, we first evaluated whether preventing the local interaction between the pair CD200-CD200R1, by using a selective blocking antibody against CD200R1, has a role on functional and inflammatory outcome after contusion-induced spinal cord injury (SCI) in mice.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death and disability and is a risk factor for the later development of neuropsychiatric disorders and neurodegenerative diseases. Many models of TBI have been developed, but their further refinement and a more detailed long-term follow-up is needed. We have used the Thy1-YFP-H transgenic mouse line and the parallel rod floor test to produce an unbiased and robust method for the evaluation of the multiple effects of a validated model of controlled cortical injury.

View Article and Find Full Text PDF

Objective: We aimed to determine the potential of aberrant glial cells (AbAs) isolated from the spinal cord of adult SOD1G93A symptomatic rats to induce gliosis and neuronal damage following focal transplantation into the lumbar spinal cord of wild-type rats.

Methods: AbAs were obtained from the spinal cords of SOD1G93A symptomatic rats. One hundred thousand cells were injected using a glass micropipette into the lumbar spinal cords (L3-L5) of syngeneic wild-type adult rats.

View Article and Find Full Text PDF

Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G).

View Article and Find Full Text PDF

Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD).

View Article and Find Full Text PDF

Background: Astrocytes contribute to neuroinflammation that accompanies neurodegenerative disorders such as Alzheimer's disease (AD). In this sense, the toxicity of these diseases might be attenuated through the modulation of astrocytic inflammatory responses. Recently, the CD300f immunoreceptor was described as a new member of the CD300 immunoreceptor family, showing promising modulatory properties.

View Article and Find Full Text PDF

Background: It has recently become evident that activating/inhibitory cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). The immunoreceptor CD300f expressed on monocytes, neutrophils, and mast cells modulates inflammation, phagocytosis, and outcome in models of autoimmune demyelination, allergy, and systemic lupus erythematosus. On the other hand, a finely regulated inflammatory response is essential to induce regeneration after injury to peripheral nerves since hematogenous macrophages, together with resident macrophages and de-differentiated Schwann cells, phagocyte distal axonal and myelin debris in a well-orchestrated inflammatory response.

View Article and Find Full Text PDF

CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation.

View Article and Find Full Text PDF

The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector.

View Article and Find Full Text PDF

Background: The zinc finger protein A20 is an ubiquitinating/deubiquitinating enzyme essential for the termination of inflammatory reactions through the inhibition of nuclear factor kappaB (NF-kappaB) signaling. Moreover, it also shows anti-apoptotic activities in some cell types and proapoptotic/pronecrotic effects in others. Although it is known that the regulation of inflammatory and cell death processes are critical in proper brain functioning and that A20 mRNA is expressed in the CNS, its role in the brain under physiological and pathological conditions is still unknown.

View Article and Find Full Text PDF

Unlabelled: Integrin-binding, Arg-Gly-Asp (RGD)-containing peptides are the most widely used agents to deliver drugs, nanoparticles, and imaging agents. Although in nature, several protein-mediated signal transduction events depend on RGD motifs, the potential of RGD-empowered materials in triggering undesired cell-signaling cascades has been neglected. Using an RGD-functionalized protein nanoparticle, we show here that the RGD motif acts as a powerful trophic factor, supporting extracellular signal-regulated kinase 1/2 (ERK1/2)-linked cell proliferation and partial differentiation of PC12 cells, a neuronlike model.

View Article and Find Full Text PDF

It is well known that cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). We have analyzed the function of cluster of differentiation (CD)300f immunoreceptor in a model of excitotoxic rat brain damage. First, to explore the presence of endogenous ligand(s) for this receptor we used a human CD300f-Ig soluble protein and confocal microscopy, showing specific staining mainly in CNS white matter and on the surface of oligodendrocytes and certain astrocytes.

View Article and Find Full Text PDF

Antiinflammatory cytokines such as interleukin-10 (IL-10) have been used to modulate and terminate inflammation and provide neuroprotection. Recently, we reported that the modular recombinant transfection vector NLSCt is an efficient tool for transgene overexpression in vivo, which induces neuroprotection as a result of its RGD-mediated integrin-interacting capacity. We here sought to evaluate the putative synergic neuroprotective action exerted by IL-10 overexpression using NLSCt as a transfection vector after an excitotoxic injury to the postnatal rat brain.

View Article and Find Full Text PDF

Unlabelled: AIM & METHODS: We have produced two chimerical peptides of 10.2 kDa, each contain four biologically active domains, which act as building blocks of protein-based nonviral vehicles for gene therapy. In solution, these peptides tend to aggregate as amorphous clusters of more than 1000 nm, while the presence of DNA promotes their architectonic reorganization as mechanically stable nanometric spherical entities of approximately 80 nm that penetrate mammalian cells through arginine-glycine-aspartic acid cell-binding domains and promote significant transgene expression levels.

View Article and Find Full Text PDF

Background: During pathology of the nervous system, increased extracellular ATP acts both as a cytotoxic factor and pro-inflammatory mediator through P2X(7) receptors. In animal models of amyotrophic lateral sclerosis (ALS), astrocytes expressing superoxide dismutase 1 (SOD1G93A) mutations display a neuroinflammatory phenotype and contribute to disease progression and motor neuron death. Here we studied the role of extracellular ATP acting through P2X(7) receptors as an initiator of a neurotoxic phenotype that leads to astrocyte-mediated motor neuron death in non-transgenic and SOD1G93A astrocytes.

View Article and Find Full Text PDF

Inflammation is an important determinant of the severity and outcome of central nervous system injury. The endogenous anti-inflammatory cytokine interleukin-10 (IL-10) is upregulated in the injured adult central nervous system where it controls and terminates inflammatory processes. The developing brain, however, displays differences in susceptibility to insults and in associated inflammatory responses from the adult brain; the anatomic and temporal patterns of injury-induced IL-10 expression in the immature brain after excitotoxic injury are unknown.

View Article and Find Full Text PDF

Objective: Integrin binding to extracellular matrix ligands, including those presenting RGD motifs, modulate diverse cellular processes. In the brain, many endogenous RGD-containing molecules are induced after damage. Previously, the gene therapy vector termed NLSCt, which displays an RGD motif, was shown to neuroprotect after immature brain excitotoxicity.

View Article and Find Full Text PDF