This study aims to review the proposed methodologies and reported performances of automated algorithms for seizure forecast. A systematic review was conducted on studies reported up to May 10, 2024. Four databases and registers were searched, and studies were included when they proposed an original algorithm for automatic human epileptic seizure forecast that was patient specific, based on intraindividual cyclic distribution of events and/or surrogate measures of the preictal state and provided an evaluation of the performance.
View Article and Find Full Text PDFConventional snap fasteners used in clothing are often used as electrical connectors in e-textile and wearable applications for signal transmission due to their wide availability and ease of use. Nonetheless, limited research exists on the validation of these fasteners, regarding the impact of contact-induced high-amplitude artefacts, especially under motion conditions. In this work, three types of fasteners were used as electromechanical connectors, establishing the interface between a regular sock and an acquisition device.
View Article and Find Full Text PDFEnsuring precise angle measurement during surgical correction of orientation-related deformities is crucial for optimal postoperative outcomes, yet there is a lack of an ideal commercial solution. Current measurement sensors and instrumentation have limitations that make their use context-specific, demanding a methodical evaluation of the field. A systematic review was carried out in March 2023.
View Article and Find Full Text PDFObjective: This work explores Hall effect sensing paired with a permanent magnet, in the context of pulmonary rehabilitation exercise training.
Methods: Experimental evaluation was performed considering as reference the gold-standard of respiratory monitoring, an airflow transducer, and performance was compared to another wearable device with analogous usability - a piezoelectric sensor. A total of 16 healthy participants performed 15 activities, representative of pulmonary rehabilitation exercises, simultaneously using all devices.
Emotions encompass physiological systems that can be assessed through biosignals like electromyography and electrocardiography. Prior investigations in emotion recognition have primarily focused on general population samples, overlooking the specific context of theatre actors who possess exceptional abilities in conveying emotions to an audience, namely acting emotions. We conducted a study involving 11 professional actors to collect physiological data for acting emotions to investigate the correlation between biosignals and emotion expression.
View Article and Find Full Text PDFMusculoskeletal conditions affect millions of people globally; however, conventional treatments pose challenges concerning price, accessibility, and convenience. Many telerehabilitation solutions offer an engaging alternative but rely on complex hardware for body tracking. This work explores the feasibility of a model for 3D Human Pose Estimation (HPE) from monocular 2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to ground truth measurements.
View Article and Find Full Text PDFSensors (Basel)
January 2023
When long-term biosignal monitoring is required via surface electrodes, the use of conventional silver/silver chloride (Ag/AgCl) gelled electrodes may not be the best solution, as the gel in the electrodes tends to dry out over time. In this work, the electrical behaviour and performance of dry electrodes for biopotential monitoring was assessed. Three materials were investigated and compared against the gold-standard Ag/AgCl gelled electrodes.
View Article and Find Full Text PDFWearable devices have been shown to play an important role in disease prevention and health management, through the multimodal acquisition of peripheral biosignals. However, many of these wearables are exposed, limiting their long-term acceptability by some user groups. To overcome this, a wearable smart sock integrating a PPG sensor and an EDA sensor with textile electrodes was developed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Rehabilitation treatments have been greatly en-hanced by health-enabling technologies, as these enable more objective and interactive interventions. Multiple studiesindi-cate that gamification is efficient in promoting treatment cus-tomization, adherence, motivation, and engagement, leading to increased patient satisfaction. In this work we study the effectiveness of a novel gamified telerehabilitation system.
View Article and Find Full Text PDFThis article proposes a new method of identity recognition in sanitary facilities based on electrocardiography (ECG) signals. Our team previously proposed a novel approach of invisible ECG at the thighs using polymeric electrodes, leading to the creation of a proof-of-concept system integrated into a toilet seat. In this work, a biometrics pipeline was devised, which tested four different classifiers, varying the population from 2 to 17 subjects and simulating a residential environment.
View Article and Find Full Text PDFBiosignals represent a first-line source of information to understand the behavior and state of human biological systems, often used in machine learning problems. However, the development of healthcare-related algorithms that are both personalized and robust requires the collection of large volumes of data to capture representative instances of all possible states. While the rise of flexible biosignal acquisition solutions has enabled the expedition of data collection, they often require complicated frameworks or do not provide the customization required in some research contexts.
View Article and Find Full Text PDFSensors (Basel)
January 2022
Biometric identification systems are a fundamental building block of modern security. However, conventional biometric methods cannot easily cope with their intrinsic security liabilities, as they can be affected by environmental factors, can be easily "fooled" by artificial replicas, among other caveats. This has lead researchers to explore other modalities, in particular based on physiological signals.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Non-expensive methods for measuring heart rate and oxygen saturation are of great importance in the scope of the COVID-19 outbreak to follow up on the symptoms and help to control the disease.Smartphones are widely available and their cameras can be used to acquire relevant physiological data, such as Photo-plethysmography (PPG) signals. Covering a light source and the camera sensor with a finger, it is possible to acquire the camera-based photoplethysmography (cbPPG) signal.
View Article and Find Full Text PDFeSports is a rapidly growing industry with increasing investment and large-scale international tournaments offering significant prizes. This has led to an increased focus on individual and team performance with factors such as communication, concentration, and team intelligence identified as important to success. Over a similar period of time, personal physiological monitoring technologies have become commonplace with clinical grade assessment available across a range of parameters that have evidenced utility.
View Article and Find Full Text PDFIn 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact.
View Article and Find Full Text PDFMultiple wearable devices for cardiovascular self-monitoring have been proposed over the years, with growing evidence showing their effectiveness in the detection of pathologies that would otherwise be unnoticed through standard routine exams. In particular, Electrocardiography (ECG) has been an important tool for such purpose. However, wearables have known limitations, chief among which are the need for a voluntary action so that the ECG trace can be taken, battery lifetime, and abandonment.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Many emotion recognition schemes have been proposed in the state-of-the-art. They generally differ in terms of the emotion elicitation methods, target emotional states to recognize, data sources or modalities, and classification techniques. In this work several biosignals are explored for emotion assessment during immersive video visualization, collecting multimodal data from Electrocardiography (ECG), Electrodermal Activity (EDA), Blood Volume Pulse (BVP) and Respiration sensors.
View Article and Find Full Text PDFIn a world where technology is assuming a pervasive role, sports sciences are also increasingly exploiting the possibilities opened by advanced sensors and intelligent algorithms. This paper focuses on the development of a convenient, practical, and low-cost system, SwimBIT, which is intended to help swimmers and coaches in performance evaluation, improvement, and injury reduction. Real-world data were collected from 13 triathletes (age 20.
View Article and Find Full Text PDFBackground: Remote ischemic conditioning (RIC) is a procedure applied in a limb for triggering endogenous protective pathways in distant organs, namely brain or heart. The underlying mechanisms of RIC are still not fully understood, and it is hypothesized they are mediated either by humoral factors, immune cells and/or the autonomic nervous system. Herein, heart rate variability (HRV) was used to evaluate the electrophysiological processes occurring in the heart during RIC and, in turn to assess the role of autonomic nervous system.
View Article and Find Full Text PDFCombining Phonocardiography (PCG) and Electrocardiography (ECG) data has been recognized within the state-of-the-art as of added value for enhanced cardiovascular assessment. However, multiple aspects of ECG data acquisition in a stethoscope form factor remain unstudied, and existing devices typically enforce a substantial change into routine clinical auscultation procedures, with predictably low technology acceptance. As such, in this paper, we present a novel approach to ECG data acquisition throughout the five main cardiac auscultation points, and that intends to be incorporated in a commonly used electronic stethoscope.
View Article and Find Full Text PDFWe review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT.
View Article and Find Full Text PDFPerfusion at microvascular level involves the contribution of both local and central regulators, under a complex vascular signaling frame. The venoarteriolar reflex (VAR) is one of such regulatory responses, of particular relevance in the lower limb to prevent edema. Although known for quite some time, many of the complex interactions involving all of these regulatory mechanisms still need clarification.
View Article and Find Full Text PDFWith the advent of low-cost computing platforms, such as Arduino (http://www.arduino.cc) and Raspberry Pi (http://www.
View Article and Find Full Text PDFThe study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2014
The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources.
View Article and Find Full Text PDF