Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health.
View Article and Find Full Text PDFIn this work, four identical micro sensors on the same chip with noble metal decorated tin oxide nanowires as gas sensing material were located at different distances from an integrated heater to work at different temperatures. Their responses are combined in highly informative 4D points that can qualitatively (gas recognition) and quantitatively (concentration estimate) discriminate all the tested gases. Two identical chips were fabricated with tin oxide (SnO) nanowires decorated with different metal nanoparticles: one decorated with Ag nanoparticles and one with Pt nanoparticles.
View Article and Find Full Text PDFMultisensor systems with low-power consumption are emerging for the Internet of Things. In this work, we demonstrate the use of self-heated networked Ag-decorated SnO NW sensors integrated into a portable module for selective detection of HS gas at low power consumption, and the integrated system is simulated as a virtual multisensor under varying heating powers for identifying and quantifying different reducing gases. The HS gas-sensing characterisations at the different self-heating powers of 2-10 mW showed that the gas response significantly increased with the increase in Ag density decoration and the heated power strongly affected the gas-sensing performance and sensor stability.
View Article and Find Full Text PDFThe long duration of a working device with a limited battery capacity requires gas sensors with low power consumption. A self-heated gas sensor is a highly promising candidate to satisfy this requirement. In this study, two gas sensors with sparse and dense SnO nanowire (NW) networks were investigated under the Joule heating effect at the nanojunction.
View Article and Find Full Text PDFThe length of single crystalline nanowires (NWs) offers a perfect pathway for electron transfer, while the small diameter of the NWs hampers thermal losses to tje environment, substrate, and metal electrodes. Therefore, Joule self-heating effect is nearly ideal for operating NW gas sensors at ultralow power consumption, without additional heaters. The realization of the self-heated NW sensors using the "pick and place" approach is complex, hardly reproducible, low yield, and not applicable for mass production.
View Article and Find Full Text PDFUltrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques.
View Article and Find Full Text PDF