Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters. In vivo and synthetic brain 5D-Diffusion-T-T-weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing.
View Article and Find Full Text PDFMachines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from across the sciences.
View Article and Find Full Text PDFIschemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference.
View Article and Find Full Text PDFIn this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast.
View Article and Find Full Text PDFWe present a mathematical construction for the restricted Boltzmann machine (RBM) that does not require specifying the number of hidden units. In fact, the hidden layer size is adaptive and can grow during training. This is obtained by first extending the RBM to be sensitive to the ordering of its hidden units.
View Article and Find Full Text PDFCommon representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace.
View Article and Find Full Text PDFPurpose: In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem.
Methods: This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise.
IEEE Trans Pattern Anal Mach Intell
June 2016
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling.
View Article and Find Full Text PDFBackground: We propose a phenotype-driven analysis of encrypted exome data to facilitate the widespread implementation of exome sequencing as a clinical genetic screening test.Twenty test-patients with varied syndromes were selected from the literature. For each patient, the mutation, phenotypic data, and genetic diagnosis were available.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2013
We discuss an attentional model for simultaneous object tracking and recognition that is driven by gaze data. Motivated by theories of perception, the model consists of two interacting pathways, identity and control, intended to mirror the what and where pathways in neuroscience models. The identity pathway models object appearance and performs classification using deep (factored)-restricted Boltzmann machines.
View Article and Find Full Text PDFWe investigate the problem of estimating the density function of multivariate binary data. In particular, we focus on models for which computing the estimated probability of any data point is tractable. In such a setting, previous work has mostly concentrated on mixture modeling approaches.
View Article and Find Full Text PDFWe claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation invites an exploration of nonlocal manifold learning algorithms that attempt to discover shared structure in the tangent planes at different positions. A training criterion for such an algorithm is proposed, and experiments estimating a tangent plane prediction function are presented, showing its advantages with respect to local manifold learning algorithms: it is able to generalize very far from training data (on learning handwritten character image rotations), where local nonparametric methods fail.
View Article and Find Full Text PDF