In patients with the rare adult-type granulosa cell tumors (aGCT), surgery is the primary treatment for both primary and recurrent disease. In cases of inoperable disease, systematic therapy is administered, but variable response rates and drug resistance complicate predicting the most effective therapy. Drug screen testing on patient-derived cell lines may offer a solution.
View Article and Find Full Text PDFBackground: Despite recent metastatic colorectal cancer (mCRC) therapeutic innovations a comprehensive synthesis of patient outcome and risk-benefit assessment of phase 1/2 trials is missing. The aim of this meta-analysis is to assess efficacy, safety, and trends over time for phase 1 and 2 mCRC trials by examining clinical benefit rate (CBR), overall response rate (ORR), grade 3 or higher adverse events (AE), and discontinuation due to AE.
Methods: The PRISMA guidelines were followed.
Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown.
View Article and Find Full Text PDFOncogene-induced senescence is a phenomenon in which aberrant oncogene expression causes non-transformed cells to enter a non-proliferative state. Cells undergoing oncogenic induction display phenotypic heterogeneity, with some cells senescing and others remaining proliferative. The causes of heterogeneity remain unclear.
View Article and Find Full Text PDFUnlabelled: Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization).
View Article and Find Full Text PDFCRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels.
View Article and Find Full Text PDFSurvival rates of cancer patients vary widely within and between malignancies. While genetic aberrations are at the root of all cancers, individual genomic features cannot explain these distinct disease outcomes. In contrast, intra-tumour heterogeneity (ITH) has the potential to elucidate pan-cancer survival rates and the biology that drives cancer prognosis.
View Article and Find Full Text PDFDirect targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy.
View Article and Find Full Text PDFPatient-derived organoids maintain functional and phenotypic characteristics of the original tissue such as cell-type diversity. Here, we provide protocols on how to label intestinal (cancer) stem cells by integrating the stem cell ASCL2 reporter (STAR) into human and mouse genomes via two different strategies: (1) lentiviral transduction or (2) transposon-based integration. Organoid technology, in combination with the user-friendly nature of STAR, will facilitate basic research in human and mouse adult stem cell biology.
View Article and Find Full Text PDFDamage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ.
View Article and Find Full Text PDFThere remains an unmet need for preclinical models to enable personalized therapy for ovarian cancer (OC) patients. Here we evaluate the capacity of patient-derived organoids (PDOs) to predict clinical drug response and functional consequences of tumor heterogeneity. We included 36 whole-genome-characterized PDOs from 23 OC patients with known clinical histories.
View Article and Find Full Text PDFRAS and BRAF proteins are frequently mutated in colorectal cancer (CRC) and have been associated with therapy resistance in metastatic CRC patients. RAS isoforms are considered to act as redundant entities in physiological and pathological settings. However, there is compelling evidence that mutant variants of RAS and BRAF have different oncogenic potentials and therapeutic outcomes.
View Article and Find Full Text PDFWnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species.
View Article and Find Full Text PDFFusion genes can be oncogenic drivers in a variety of cancer types and represent potential targets for targeted therapy. The gene is frequently involved in oncogenic gene fusions, with fusion frequencies of 0.2%-3% throughout different cancers.
View Article and Find Full Text PDFIn vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling.
View Article and Find Full Text PDFChromosome segregation errors cause aneuploidy and genomic heterogeneity, which are hallmarks of cancer in humans. A persistent high frequency of these errors (chromosomal instability (CIN)) is predicted to profoundly impact tumor evolution and therapy response. It is unknown, however, how prevalent CIN is in human tumors.
View Article and Find Full Text PDFOvarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids.
View Article and Find Full Text PDFAnti-EGFR therapy is used to treat metastatic colorectal cancer (CRC) patients, for which initial response rates of 10-20% have been achieved. Although the presence of HER2 amplifications and oncogenic mutations in KRAS, NRAS, and BRAF are associated with EGFR-targeted therapy resistance, for a large population of CRC patients the underlying mechanism of RAS-MEK-ERK hyperactivation is not clear. Loss-of-function mutations in RASGAPs are often speculated in literature to promote CRC growth as being negative regulators of RAS, but direct experimental evidence is lacking.
View Article and Find Full Text PDFModel systems with defined genetic modifications are powerful tools for basic research and translational disease modelling. Fortunately, generating state-of-the-art genetic model systems is becoming more accessible to non-geneticists due to advances in genome editing technologies. As a consequence, solely relying on (transient) overexpression of (mutant) effector proteins is no longer recommended since scientific standards increasingly demand genetic modification of endogenous loci.
View Article and Find Full Text PDFOrganoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5 intestinal stem cells.
View Article and Find Full Text PDFOrganoid technology holds great potential for disease modeling and regenerative medicine. In this issue of Cell Stem Cell, Múnera et al. (2017) establish the generation of pluripotent stem cell-derived colon organoids that upon transplantation in mice, resembling human colon to a large extent, opening up avenues to study disease pathogenesis in human colon tissue.
View Article and Find Full Text PDF